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ABSTRACT 
In this paper, we describe some of the key observations resulting 

from our work on using software engineering technologies to help 

detect errors in medical processes. In many ways, medical 

processes are similar to distributed systems in their complexity 

and proneness to contain errors. We have been investigating the 

application of a continuous process improvement approach to 

medical processes in which detailed and semantically rich models 

of the medical processes are created and then subjected to 

rigorous analyses. The technologies we applied helped improve 

understanding about the processes and led to the detection of 

errors and subsequent improvements to those processes. This 

work is still preliminary, but is suggesting new research directions 

for medical process improvement, software engineering 

technologies, and the applicability of these technologies to other 

domains involving human-intensive processes. 

 

Keywords: Continuous process improvement, process 

verification, medical processes 

1. INTRODUCTION 
This paper summarizes key lessons learned from our initial efforts 

to apply the technology and approaches of software validation 

and continuous software process improvement to the reduction of 

errors in medical care. Medical errors occur frequently and, as 

reported in the 1999 Institute of Medicine report, To Err is 

Human [15], preventable errors in hospitals alone cause at least 

97,000 deaths per year in the US. 
 

 

Our initial work offers considerable promise that software 

engineering approaches, originally developed to support software 

process improvement, can reduce the incidence of such errors. 

This work has also demonstrated that exploration of this domain 

is useful in pointing to areas in which software engineering 

technologies should be improved. 

 

There is surprising similarity between healthcare systems and 

software systems, particularly human-intensive, distributed 

system. Healthcare systems typically involve many different 

types of human agents (e.g., doctors and nurses with different 

specializations and roles, pharmacists, lab technicians, and 

support staff), hardware devices (e.g., infusion pumps, radiation 

therapy machines, and patient monitoring devices), and software 

applications (e.g., computerized physician order entry systems, 

decision support systems, and electronic medical records). 

Coordination is particularly key in these systems, as humans are 

often participating simultaneously in several different processes at 

any given time, and their participation in each process may entail 

the parallel performance of many different subtasks and 

interactions with several different devices and software 

applications. In performing these tasks, it is common for 

exceptional conditions to arise, requiring specialized actions that 

may vary considerably depending upon the circumstances. 

Continual change is also a key issue in medical processes. 

Changes may result from the introduction of new devices, new 

software applications, new personnel, or even personal 

preferences. New medical studies may lead to new guidelines or 

standards of care. Still other changes come as reactions to errors 

that have recently occurred locally. Such changes are usually 

made based only on informal analysis of poorly understood 

processes. These many parallels between medical processes and 

software engineering issues suggest that the software engineering 

community has much to offer in the search for ways to improve 

healthcare. 

 

The University of Massachusetts Medical Safety project has been 

investigating how software engineering technology, originally 

developed to improve the quality of software systems, could be 

effectively applied to improving the quality of medical processes. 

In particular, we have undertaken several case studies intended to 

shed light on the applicability to healthcare processes of the 

classical Deming Cycle [9] of continuous process improvement 

employing software validation tools for error detection. These 

case studies have involved developing models of healthcare 

processes that are unusually detailed and semantically broad, 
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analyzing these process models using finite-state verification and 

other analysis techniques, and then working with medical 

professionals to systematically improve the processes when errors 

have been found. 

 

This project is succeeding in providing benefits to both healthcare 

and software engineering. The medical professionals involved 

have reported that this project has changed the way they view, 

describe, teach, evaluate, and improve their processes. Moreover, 

several serious problems have been uncovered and the medical 

processes have subsequently been improved. There have also 

been benefits to software engineering in that it has been necessary 

to enhance the technologies we have used in ways that should also 

improve their effectiveness when applied to software systems. 

Moreover, we now have a new perspective on software 

development, particularly for human-intensive systems. 

 

2. APPROACH 
The very broad outlines of our approach had been suggested in 

some earlier work [18, 19] that proposed that processes share 

many of the characteristics of application software and that 

technologies for the analysis and continuous improvement of 

application software might be usefully applied to processes. 

Applying these technologies to processes in domains other than 

software engineering was also suggested in [19]. The work we 

describe here provides substance and preliminary confirmation to 

these earlier suggestions. 

 

The approach to process improvement that we have been 

developing is based on creating detailed, semantically rich 

models of the processes and then applying a number of different 

analysis techniques to try to detect errors in those processes. The 

analysis techniques not only detect errors, but also provide 

feedback about the source of the errors that can then be used to 

help determine how the processes should be improved. With help 

from the medical professionals, who in this case are the domain 

experts, computer scientists create the models and apply the 

analysis techniques to those models. When a defect is found in a 

process model, it needs to be examined carefully to determine if 

the problem is associated with our representation of the process, 

with any analysis artifacts, or if it is indeed an error in the 

process. If it is the latter, then domain experts propose 

modifications to the processes, often with the help of computer 

scientists who can explain the source of the problem and point out 

alternative solutions. The model of the modified process is then 

carefully reevaluated to assure that it has successfully dealt with 

the uncovered error and has not introduced new errors that violate 

the current stated requirements. With this approach, several 

alternative models can be considered and evaluated before a 

decision is made about the way the actual process should be 

modified. We have already had some experiences in which 

process model improvements were translated almost immediately 

into changes to actual medical processes. Thus, this approach 

provides a technological basis for process improvement applied 

not just to healthcare systems but also more broadly to other 

classes of human-intensive systems. 

The medical community has tried to model and evaluate its 

processes for decades, and there is an industry devoted to helping 

hospitals to do so. Some of the medical professionals involved in 

our project had experiences with such efforts, which made them 

skeptical about the value of process modeling. But the greater 

specification breath and detail of our process modeling approach 

and the feedback obtained from rigorous analysis have led to 

valuable insights and process improvements so that they now feel 

the effort needed to create these models is warranted. The insights 

gained and the benefits of this approach have been described from 

both the medical perspective [12, 13], and from the computer 

science perspective [5-7, 20]. Here we present some observations 

that derive from our experiences using software engineering 

modeling and analysis techniques to create, validate, and improve 

medical processes. 

 

Our project has been using specific software technologies to gain 

a deep understanding of medical processes and the nature of 

medical process improvement problems. Specifically, we are 

using the Little-JIL [2] process definition language to model the 

processes, the PROPEL [8, 21] property requirements engineering 

system to help elucidate and represent properties, and the 

FLAVERS [11] and SPIN [14] finite-state verification systems to 

detect defects in the Little-JIL process definitions and in the 

actual medical processes. Our recent work has also suggested that 

other analysis techniques, such as simulation and fault-tree 

analysis, might yield useful results. In this paper, we refer to 

specific features of these technologies, but use them as the basis 

for observations intended to be more broadly applicable to other 

technologies. While we have found the technologies that we have 

used to be effective in some ways, our experiences with them are 

more intended to form the basis for suggestions about the 

fundamental needs in this domain and about requirements for 

better technologies. 

 

2.1 Modeling Processes 
Process Modeling Language: Our use of the Little-JIL process 

definition language in this project has suggested the importance of 

certain features such as support for abstraction, hierarchical 

decomposition, concurrency, exception handling, and 

operations designed to support the flexibility that human agents 

expect for doing their tasks (e.g., non-deterministic choice). In 

addition, it is important that the language have well-defined 

semantics so that process models described in the language can 

be rigorously analyzed. 

To illustrate the kind of detailed modeling we are employing in 

this project, Figure 1 depicts a Little-JIL definition (where the 

term “definition” is used by Little-JIL to denote the more detailed, 

semantically rich models that can result) addressing a portion of a 

chemotherapy process. This figure and the ensuing description are 

only intended to give the reader a sense of the language; full 

details about the language can be found elsewhere [23]. A Little- 

JIL definition is centered on a coordination diagram of the 

process, such as the one shown in Figure 1, which defines the 

hierarchical task decomposition of the task being modeled. This 

hierarchical decomposition view of the process is a relatively 

natural structural representation that, nevertheless at times, can 

obscure some of the complicated control flow that is also being 

represented. 

 

The coordination diagram in Figure 1 is a view of only the top- 

level process tasks, represented as steps (denoted in the diagram 

as nodes, called step bars). In this figure, the root step is 
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Figure 1. Top-level chemotherapy process definition in Little-JIL. 
 

decomposed into two substeps executing in parallel (indicated by 

the equal sign in the step bar). Each substep can be further 

decomposed, or elaborated, down to the leaf steps, for which the 

process definer is unable to, or uninterested in, providing further 

detail. The first substep, prepare for and administer 

first cycle of chemotherapy, of the root step 

chemotherapy process, is decomposed into six substeps to 

be executed in sequence (indicated by the arrow pointing to the 

right in the step bar). Each step includes a specification of the 

type of agent, that is the type of participant who is to perform the 

tasks associated with each step, such as the type of doctor or 

nurse, hardware device, or software application. Specification of 

the agents, resources, artifacts, and some other features of the 

language as well as further decomposition of the steps in the 

diagram are not shown here. 

Figure 1 also shows that the root step chemotherapy 

process has a substep consider alternative 

treatment that acts as an exception handler (indicated by the 

``X'' on the chemotherapy process step bar to which the 

step consider alternative treatment is connected). 

In the step perform consultation and assessment, if 

the doctor determines that the patient's pathology report does not 

indicate cancer, the Pathology Report Does Not 

Indicate Cancer exception is thrown (the elaboration of the 

perform consultation and assessment step is not 

shown). A thrown exception propagates control up the step 
decomposition tree until it reaches a matching handler. Thus, 

control is transferred to the exception handler step consider 

alternative treatment where appropriate action is 

specified. 

While step-sequencing specifications provide control over the 

order of step execution, Little-JIL also enables specification of 

synchronization through such constructs as a channel.  In this 

figure, a channel is used to specify that a doctor cannot dictate a 
consult note before evaluating the patient's condition. But, 
because a consult note is primarily used for billing and legal 
purposes, the doctor may choose to dictate the consult note at any 
time after evaluating the patient, for example while the tasks in 
prepare for and administer first cycle of 

chemotherapy are already underway. This step sequencing 

flexibility is captured by the coordination diagram in Figure 1, in 
which “consultation channel'“ (represented iconically as an 
annotation attached to the circle above the root step, 

chemotherapy process), is counted on to deliver a consult 

note to the step dictate consult note, which cannot start 

until after the arrival of the consult note artifact. The perform 

patient consultation step, which is not shown, is a 

substep of the perform consultation and 

assessment step and is the source of this artifact. Thus, this 

example shows that the dictate consult note step can 

potentially execute in parallel with tasks in prepare for and 

administer first cycle of chemotherapy, but only 

after receiving the appropriate paperwork. 

Process Modeling and Elicitation: Carefully modeling 

processes leads to better understanding about those processes. It 

was not unusual to find that the medical professionals did not 

fully understand the processes in which they were participants. 

Usually they knew their tasks, but often had misunderstandings 

about what others involved in the process actually did or how 

artifacts were used. By understanding the process better, errors in 

the process sometimes become apparent. Thus, the activity of 

modeling a process often leads to the discovery of process errors 

and always leads to better understanding. 

 

A multifaceted language that separates out the different issues 

that need to be addressed facilitates process elicitation. The 

Little-JIL language is multifaceted in that the step definition has 

many different aspects, each of which can be considered 

American Journal of Science and Engineering | Volume-4, Issue-2 | (www.ajse.us)

AJSE | January, 2024 | © SMART SOCIETY                                                                                                                                                                         Page 3



 

separately. Thus, for example, in defining a step in the process, 

one has to consider the preconditions, the postconditions, the 

exceptions that could be thrown or handled by the step, the 

artifacts that are input to or output from the step, resources that 

might be requested or released, which agents should execute the 

step, the substeps that comprise the step, and the order in which 

these substeps should be executed. It is not necessary to consider 

all of these facets at once. In our project, a first pass was made at 

understanding and representing the process only involving step 

decomposition and control flow. Later passes through the process 

would then address other facets. Adding these additional facets, 

however, often resulted in changes to the overall step 

decomposition and control flow. Such changes are unavoidable, 

since as noted above, the domain experts were often not sure of 

the details of the process and had to consult with others involved 

in the process work or reevaluate their own process activities. 

 

From the above list of facets, it is clear that Little-JIL supports the 

specification of a relatively broad range of semantic features of a 

process. This proved to be of considerable importance, as we 

found that the medical processes we wanted to define required 

strong semantic support for specifying such aspects as 

concurrency, exception handling, scoping, late binding, and 

flexible control flow that supported the freedom of choice often 

desired by human agents. Thus, the language supported detailed 

specification of how exceptional conditions are identified and 

handled, how parallel tasks must be synchronized, and how the 

assignment of personnel to tasks is indeed late-bound. On the 

other hand, the language did not insist that an ordering be 

imposed on selecting which substep to do next, if such an 

ordering was not actually required in the real process. This 

flexibility allowed us to define processes that more closely and 

completely modeled how they are actually performed. Having 

more accurate, complete, and detailed process definitions allowed 

for more meaningful and accurate analysis, as described further in 

the next subsection. 

 

Abstraction and hierarchical decomposition facilitates 

developing the process models incrementally. The process 

modelers had to continually make choices about how many levels 

to which to decompose a task and the level of abstraction or 

granularity of that decomposition. Abstraction allows the 

activities associated with a task to be conceptualized. When it 

turned out that more detail was required, some tasks were then 

further decomposed so that these details could be elaborated. This 

allowed for incremental development of the model, and as 

discussed in the next subsection, allowed for incremental analysis, 

which provided incremental feedback. 

 

Process Comprehensibility: With the inclusion of the different 

facets described above, the detailed process definitions quickly 

became large and complex. Even seemingly simple processes, 

such as “verify a patient's ID”, became unexpectedly large when 

the many variations of the process were defined. Some of our 

processes involved hundreds of steps, with all the facets of each 

step completely defined. To assist with this modeling and with 

comprehension, abstraction and hierarchical decomposition are 

extremely important. Any step in Little-JIL can be referenced 

many times, very much as though a step is a method call. A step, 

therefore, becomes an abstract representation of its definition, 

which  for  a  non-leaf  step  is  based  on  its  hierarchical 

decomposition. Computer scientists are familiar and comfortable 

with these concepts, but we found that the domain experts had to 

be taught these concepts and their benefits. 

Step decomposition in Little-JIL is a significant aid in 

understanding the basic breakdown of a task, but can also be 

somewhat misleading since the flow of control in Little-JIL is 

superimposed on the step decomposition view. For example, a 

parallel step may have several children, each of which can be 

further elaborated. This may appear to define only a simple task 

decomposition, but it also actually specifies that the execution of 

the descendant steps of one subtree can be interleaved with the 

execution of the descendants of the others. Thus on the positive 

side, Little-JIL succinctly and, from some perspectives, clearly 

represents these complicated potential traces. On the negative 

side, few domain experts (and probably many computer scientists) 

could be expected to completely grasp the complexity of what is 

being described. 

 

The process definitions needed to be reviewed carefully and 

repeatedly by the medical professionals to assure that the 

definitions represented the actually processes appropriately. Thus, 

it is important that domain experts be able to understand, although 

it is probably not necessary that they be able to develop, the 

process definitions. Little-JIL coordination diagrams provide a 

visual spatial representation, as shown in Figure 1, that shows the 

step decomposition. The editing tool used to develop these 

diagrams can assist in efforts to understand process definitions by 

allowing the viewer to select the facets that are to be explicitly 

shown and by providing wizards that furnish more detailed 

information about steps and check for simple well-formedness. 

On the one hand, we were pleasantly surprised at how well some 

of the medical professionals learned the process definition 

language and were able to comprehend the Little-JIL process 

definitions. On the other hand, this comprehension was sometimes 

superficial. Thus, additional support is needed for domain experts 

to understand the process definitions. There are many alternative 

representations to help with model understanding that should be 

explored. For example, a role based view that shows the activities 

for a type of agent, such as the triage nurse, might be effective. 

We have experimented with creating a natural language, textual 

representation of the process definition. An example of a 

hyperlinked, textual representation for part of the process shown 

in Figure 1 is shown in Figure 2. As with the spatial 

representation, the viewer should be able to determine which 

facets of the process definition should be described and have 

some control over customizing the phrases that are used. 

Although a textual description did not address all the concerns 

about comprehensibility, the medical professionals greatly 

appreciated having a textual representation available for review. 

 

2.2. Analyzing Processes 
Analysis is a cornerstone of our approach. In fact, if the system is 

interesting enough to warrant being modeled then the model is 

probably complex enough to warrant careful scrutiny by 

rigorous and automated analysis techniques. Without such 

scrutiny one should have serious concerns about the validity of 

the model and any decisions made based on that model. Thus as 

mentioned above, to support rigorous analysis, the semantics of 

the modeling language must be formally and precisely defined. 
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Figure 2. Hyperlinked, textual view of part of the process shown in Figure 1. 

 

Even with careful analysis, complex processes represented by 

detailed models are bound to contain defects, just as most 

interesting programs are bound to contain defects. Since we are 

creating models on which to base decisions and further reasoning, 

enough to justify this trust. As the models are repeatedly validated 

using a range of analysis techniques, we increase our confidence 

in their accuracy. Moreover, if decisions made using the models 

then fail to provide the expected results, that too is a form of 

validation that should result in carefully scrutiny to determine the 

cause and subsequent improvement to the model. Thus, users of 

the model must recognize this limitation and evaluate 

recommendations derived from the model carefully, especially 

when dealing with life-critical processes, such as many medical 

procedures. 

 

The analyses that we have been considering include finite-state 

verification to determine if all traces through a model adhere to 

properties that indicate the legal sequences of events (e.g., [11, 

14]), fault-tree analysis to reveal vulnerabilities if steps in the 

process are not executed appropriately [22], and discrete-event 

simulation [17] to determine the aggregate behavior after a large 

number of traces have been executed. These are by no means all 

the kinds of analyses that should be considered, but each is 

substantially different and provides distinctive kinds of feedback. 

Since we have the most experience with finite-state verification, 

here we emphasize our observations from those experiences. A 

more thorough description of our experiences applying finite-state 

verification to medical processes is given in [5]. 

 

Property Specification: Before applying finite-state verification, 

we first needed to determine the properties of the system that 

should be evaluated. We usually started with medical guidelines 

that we first restated as high-level requirement statements, being 

careful to use consistent terminology. For example, “administer 

chemo” might have a different meaning depending on the part of 

the process that is being described by the guidelines. These 

requirements are usually described at such a high-level of 

abstraction that they are process-independent, meaning that a 

wide range of approaches could be used to satisfy them. Although 

this makes them generally applicable in many different settings, it 

is usually difficult to determine what is actually required for them 

to be satisfied. For example, a high-level generic property for 

most medical processes is: “Do the right procedure, on the right 

patient, at the right time.” 

 

Working with the medical professionals, we translated each high- 

level property into a set of more specific and measurable 

requirement statements. Determining if it is the “right patient”, for 

example, might require checking that the name on the ordered 

medical procedure matches the name on the wrist-band ID, 

matches the name on the medical chart, and matches the name 

and date of birth provided by the patient (assuming the patient is 

conscious and speaks and understands the same language as the 

medical professional checking the ID). For this second level of 

refinement, we were also careful to use the terms defined in a 

glossary, adding terms when necessary. 

 

These refined requirements were still not precise enough to form 

the basis for verifying the processes, however. The patient ID 

verification example, raises questions such as “when does the 

patient ID need to be checked?”, “do all three checks have to 

happen in any particular order?”, and “can other events happen in 

between checking the patient chart and checking the patient ID?” 

The Propel system was designed to help elicit these types of 

details from domain experts and then to represent them as a finite- 

state automaton that can serve as the basis for finite-state 

verification. These low-level, detailed, and narrowly focused 

requirement specifications are frequently called properties. Before 

verification could be done using these properties, the events 

mentioned in the properties had to be mapped to events in the 

process. 

1. Chemotherapy Process 

To perform the chemotherapy process, the medical professionals involved should, in no required order, prepare for and 

administer first cycle of chemotherapy and create and process consult note. 

 
The medical professionals, however, cannot start create and process consult note before perform patient 

consultation (a substep of perform consultation and assessment) has completed. 

 

2. Prepare for and Administer First Cycle of Chemotherapy (substep of Chemothereapy Process) 

To perform this step, the medical professionals involved must have the biopsy, the pahtolgy report and the patient 

chart. 

 
To prepare for and administer first cycle of chemotherepy, the medical professionals involved should perform, in 

order, each of the following steps: 

a. Perform consultation and assessment 

b. Perform initial review of patient records 

c. Perform pharmacy tasks 

d. Perform patient teacing 

e. Perform final tasks (day before chemo) 

f. Perform first day of chemo tasks 

 
If during perform consultation and assessment, the medical professionals find out that the pathology report does not 

indicate cancer, the attending MD should consider alternative treatment. In this case, after successful completion of 

the step consider alternative treatment, the step chemotherapy process is considered complete. 
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Figure 3. Screen shot of the PROPEL question tree and finite-state automaton templates used 

during the development of a property. 

 

This mapping was usually straightforward, but needed to be done 

with care, since an event in the property might map to different 

events in the process definition. Taken together, these properties 

and the bindings of event names to step names provided a detailed 

and rather process-specific description of the overall requirements 

for the process. 

To represent the properties, Propel provides templates for 

commonly occurring verification property patterns [10]. These 

templates explicitly indicate the options that need to be 

considered for each pattern. In some ways, this is similar to the 

facets of the Little-JIL process modeling language since, like the 

facets, they remind the user of the many different concerns that 

must be taken into consideration. Propel provides the specifier 

with three alternative representations of the templates: 

disciplined, natural language text where the options are 

represented as phrase choices; finite-state automata graphs where 

options are represented by optional transitions, labels, and 

accepting states; and by question trees that first select the 

appropriate pattern based on answers to a few initial questions, 

but then continue to pose questions about all the options 

associated with the selected pattern template. Figure 3 provides an 

example of the finite-state automaton view and the question tree 

view for a simple property that was developed to assure that there 

is a signed consult note in the patient's record before 

chemotherapy is administered. 

The medical professionals initially had difficulty understanding 

the difference between a process model, an operational view, and 

a requirement or property specification, a goal-oriented view. 

Moreover, the medical professionals tended to think in terms of 

“war stories” about what went wrong. We could sometimes map 

such a story to an appropriate set of properties. More work is 

definitely needed to determine how to better exploit these war 

stories, which are examples of scenarios that led to process errors. 

Developing the properties provided valuable feedback about the 

current process model. We usually started developing the process 

models before the properties, based on the medical guidelines and 

the information provided by the medical experts who were 

working with us. We made note, however, of any requirements 

that were mentioned during this process elicitation. Those 

requirements, plus existing guidelines or protocols, were the 

initial set of high-level requirements. We also asked the medical 

professionals to suggest other, perhaps unstated but important, 

properties. In these discussions, it was not uncommon for medical 

professionals to propose requirements about details that were not 

even represented in the current process models, even though the 

medical professionals making the suggestion might have been 

working with us for months on developing these models. Clearly, 

concentrating on the requirements provided a different 

perspective, one focused on the intent of the process. We decided 

that if a requirement was important enough to be stated, that the 

models should be developed to the point where the tasks relevant 

to that requirement are actually represented and can be reasoned 

about during analysis. Thus, for example, we usually decided not 

to model the low-level details about how a form is to be filled out. 

On the other hand, since patient ID errors are common and often 

serious, details about how to check patient ID were added to the 

process models after requirements about this aspect of the process 

arose. Thus, what was deemed important by the domain experts 
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determined the scope and granularity of the process models and 

the requirements for those models. 

The properties that we specified and verified were primarily 

concerned that specific sequences of events did (or did not) occur. 

Occasionally we encountered a few properties concerned with 

state information, which, as is usually done, we dealt with by 

creating events that set or check a value. We encountered few 

properties that were concerned with timing events. One such 

example is the need to use or return a unit of blood within a set 

time period. There were a number of properties, however, that 

were concerned with efficiency, since inefficiency can impact 

patient safety. For example, a property might be that there is a 

check on the patient's ID before a critical procedure is performed. 

On the other hand, we might also want to check that no more that 

“N” such checks are performed before the procedure, since 

processes that have excessive checks are inefficient (and 

ineffective since the medical professionals may become lax about 

performing checks if they are deemed to be excessive.) In [5] an 

example with a richer sequence of events is used to determine if 

the process is inefficient. This property was based on a nurse's 

intimate knowledge of the process and where inefficiencies often 

arise. 

Issues surrounding the specification and handling of exceptions 

have been particularly interesting, and often problematic. Most 

of the errors that we have found in the process models and in the 

processes themselves involve exceptions. This is not surprising 

since studies have shown that errors are most likely to occur 

during the handling of exceptional cases. Medical guidelines, 

however, often do not even indicate what is to be done in such 

situations. This leads to variation in how medical professionals 

respond to these situations and, consequently, is more likely to 

lead to errors. From a technological point of view, the analysis 

tools that we used should be significantly improved to handle 

exceptional cases better. For example, often the properties were 

wrong because exceptional cases were not taken into account. 

That is, the property was stating what was expected only if no 

exceptions arose. Better support for indicating when exceptional 

and non-exceptional situations are to be considered in the 

property specifications should be explored. 

Finite-state Verification: Finite-state verification problems are 

known to often explode in size, making it impractical to analyze 

large systems. Thus, we employed a number of optimization 

techniques when creating the internal representation of the Little- 

JIL process definitions. These optimizations are conservative but 

often reduce the size of the model by introducing some 

imprecision. The consequences of this imprecision are that the 

counter example traces through the internal model that violate the 

property may not correspond to actual executable traces through 

the process model. Thus, they are a false positive or spurious 

indication of an error. It is interesting to note that in our analysis 

of Little-JIL processes, spurious error reports hardly ever 

occurred. We believe that this is because this process language 

mostly describes control and event flow and does not represent 

compound objects or references to such objects using aliasing, 

which are known to degrade the results of static analysis. 

Moreover, unlike programs, most of the traces through our 

process models tended to correspond to actual executable 

behavior. Although this is a known benefit associated with 

analyzing high-level designs, it is interesting to see that it also 

applies to the detailed models provided by a process definition 

language, such as Little-JIL. 

Using finite-state verification, we mostly found errors in the 

process models, as opposed to errors in the actual processes 

themselves. Although this might seem somewhat disappointing, 

as noted above, validating the models is an important part of 

process improvement. Before process models can be used for 

decision-making, they should be carefully validated. Using 

analysis techniques, we found numerous defects in our process 

models, but we also found some interesting and subtle errors in 

the actual processes that could have serious consequences. 

Analysis of the process models were also useful in helping to 

determine the causes of these errors and in evaluating alternative 

potential solutions for correcting them. 

The set of property specifications associated with a process 

model continued to grow as the process was modified, as defects 

were found in the process models, and as errors were found in 

the processes themselves or in the clinical setting. This set of 

properties was invaluable. It provided a baseline set of 

requirements against which to verify the process models after any 

change. As this collection grew, we gained more confidence in 

the requirements and in the processes that adhered to these 

requirements. We suspect that domain experts will be more 

willing to consider process improvements knowing there is a 

detailed model of the process and its properties that can be used to 

evaluate those improvements, 

Other analyses: As mentioned above, we intend to use the 

process models as the basis for a range of analysis techniques. 

Two techniques that we have initially explored are fault-tree 

analysis and discrete-event simulation. Fault-tree analysis creates 

a tree representation of how a hazard could occur in terms of what 

would need to fail or be faulty. The trees are then translated into 

Boolean flow equations that can be evaluated to determine 

minimum cut sets. Each minimum cut set indicates the collection 

of failures that would have to occur together for the hazard to 

arise. Historically fault trees have been used in traditional 

engineering disciplines such as mechanical engineering (although 

Leveson [3, 16] and others has also explored their use in systems 

engineering). In this prior work, fault trees tended to be large and 

were usually created by a team of safety experts. One of the 

drawbacks of this approach is that it is difficult to be sure that 

fault trees created in this way are sufficiently complete and 

accurate. We have demonstrated that fault-trees can be derived 

automatically from Little-JIL process definitions, using a template 

for each step kind and facet of the language [4]. The resulting 

fault trees are surprisingly large and complicated. Although one 

could argue that the fault trees derived from a process model may 

also be inaccurate if the process model is inaccurate, the process 

model is significantly simpler than the derived fault tree. 

Moreover, the process model should have first undergone 

rigorous validation before the corresponding fault-tree was 

generated and analyzed. In addition, a single, carefully validated 

process model can be used to derive a very large number of fault 

trees, namely a different one for each hazard to be studied. To 

give a sense of the complexity and size of these trees, a fault tree 

for a single hazard derived from a blood transfusion process is 

given in Figure 4. 
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Figure 4. Example of a fault tree for a single hazard derived from a medical process. 

 

We have also been experimenting with using the process models 

to drive discrete-event simulations. Simulations can be used to 

evaluate performance and efficiency. For our emergency room 

case study, one of the issues is how to determine the best resource 

mix that delivers optimal flow and minimal waiting times. For 

example, would it be better to hire more nurses, more doctors, or 

add more beds to reduce waiting time for patients? Here again, we 

suspect that our more detailed and validated model will be a better 

foundation for considering these issues than the high-level models 

that are currently used for simulation. 

 

3. Conclusion 
We have described how software engineering technologies and 

approaches can be incorporated into a Deming Cycle of 

continuous improvement to medical processes. This approach 

entails creating a process model that is detailed and addresses a 

broad range of semantic issues, extensively analyzing that model 

to validate that it is a reasonable basis for making decisions about 

the real process, and then using the validated model to detect 

errors and other problems in the actual process, with the eventual 

goal of improving that process. This approach to process 

improvement is being evaluated by applying it to critical 

processes from the medical domain. Currently we are involved in 

three case studies, emergency room flow, blood transfusion, and 

chemotherapy administration, each of which has different 

characteristics and places different demands on the supporting 

technology that we are developing. This work has led to a number 

of observations that seem particularly important. 

The choice of a modeling language should depend on what one 

wants to do with the model and the process. In our case, we want 

to reason about how medical errors can occur, and how to guard 

against them. To be the basis for definitive reasoning the process 

modeling language itself must have well-defined semantics. But if 

the reasoning is to be relevant to a real-world process, then the 

language must also be capable of capturing in detail all aspects of 

the way in which the process might be performed. This dictates 

the selection of a process modeling language that allows fine- 

grain details to be represented. But, the language also needs to 

support the specification of such semantics as complex control 

flow, concurrency, exception handling, and scoping. While being 

quite precise about such issues, the language must also provide 

for the flexibility desired by humans. 

 

Needing to deal effectively with each of these semantic issues 

creates challenges for a process language. Exception handling, for 

example, is an important element in human-intensive systems, but 

specifying it adds complexity both to the process and to the 

process model. Often process descriptions are not clear about 

what exceptional situations might arise and how to deal with them 

if they do. In the medical domain, this can be a source of wide 

variation in behavior, which is undesirable and often leads to 

errors. Once the exceptional conditions and how to handle them 

are determined, this information needs to be represented in the 

model, which itself can be difficult to do with most process 

modeling languages. Even with a supportive language, such as 

Little-JIL, representing exceptions has proven to be tricky and 

error prone. Exceptions also complicate the specification of 

requirements and any analysis being applied. We found that they 

were a major source of errors in the models and in the actual 

processes. 

 

Additional specification complexity is added when the model 

incorporates execution semantics. Our work has the eventual goal 

of using executing process definitions to provide coordination 

support and proactive guidance to humans. This should not be 
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undertaken unless these process models have been extensively 

analyzed. Our experience has indicated, however, that there are 

considerable challenges in developing an executable process 

language that has sufficient clarity, semantic breadth, and 

capacity for detail. 

 

In our opinion, if a process is complicated enough to warrant 

precise and detailed modeling then the accuracy of the model 

requires careful scrutiny. This is particularly true for detailed 

models, such as the models we are developing using Little-JIL. 

Our experience suggests that these sorts of detailed and complex 

process models should be developed incrementally so that high- 

level, more-abstract views of the process can be validated before 

more-detailed models are developed. The scope and granularity of 

the model should be determined by the questions the model is 

intended to address. There is no doubt that detailed models 

require more effort to develop and maintain, but provide more 

definitive, in-depth feedback (in other words, there is no free 

lunch). But, our work has been quite satisfying in that the 

detailed process models and the analysis that we have applied 

have indeed discovered errors in actual medical processes. Indeed 

every step in this approach, from process modeling, to property 

specification, to process model verification has led to the 

discovery of errors of one kind or another in the actual processes. 

 

Future work: This work has already suggested many directions 

for future research. A number of these directions are suggested 

by attempts to use process models to introduce automation. As 

already noted, we would like to eventually use validated process 

models to guide medical professionals while they are actually 

executing their processes in a clinical setting. For example, a 

doctor's hand held device could indicate the current process status 

for each patient and highlight the most urgent items according to 

the most recent recommended protocols. There are human 

interface issues in how to represent this information on the 

handheld device so that it can be immediately understood and 

used. There are other interesting issues in how to determine and 

maintain coherence between the actual process and the process 

model. 

One of the most frequently asked questions is what is the cost in 

terms of time and effort to elicit and evaluate a process. To date, 

all the process models were developed and analyzed concurrently 

with technology development and involved students who were 

learning about using that technology. It would be interesting to 

assess the cost of having trained computer scientists work with 

medical professionals on complex processes to experimentally 

evaluate the costs and error detection effectiveness. Related 

questions revolve around the generalizability of medical processes 

and the degree to which each hospital might have to create its 

own hospital-specific process models. We believe, that for well- 

designed process models, the customization of a general process 

to a particular hospital setting should mostly involve changes to 

the low-level process steps. This hypothesis needs to be 

evaluated. Moreover, there is the issue of how many processes 

would need to undergo such careful modeling and validation. In 

the medical domain, it has been suggested that the number of such 

processes may be surprisingly small, in which case it would not 

be infeasible to develop models of each of these if this approach 

were to be found to indeed reduce the number of medical errors 

and help improve the efficiency of medical care. Medical 

protocols change frequently, however, so at least the generic 

versions of these models would need to be updated regularly and 

then recustomized. Clearly there are interesting issues about how 

to do this efficiently and accurately. As noted above, process 

models could be used to provide guidance during real execution 

of the process. In addition, they seem to hold considerable 

promise as teaching aids. Both are important when processes are 

being changed frequently. It is currently difficult for medical 

professionals to stay up-to-date on the latest recommended 

protocols without such assistance. Providing updated process 

models that can provide on-line guidance would help address this 

problem. 

 

Finally, we note that the proposed approach does not seem to be 

specific to any particular set of technologies or restricted to any 

particular domain. We have demonstrated its effectiveness by 

using a specific modeling language and set of analysis tools, but 

other languages and tools could be used as well to support process 

improvement. We have tried to indicate the requirements for these 

capabilities. The medical domain has proven to be an interesting 

and challenging domain, and an important one to address, but we 

believe the approach is applicable to many domains, especially 

those that rely importantly upon complex, human-intensive 

processes. 

 

Going further, we now envision a new paradigm for system 

development and improvement that is driven by a detailed 

understanding and evaluation of a coordination model that 

provides the context in which application software and hardware 

devices will be used. Evaluation of this model could be used to 

derive context requirements for the software and hardware 

devices, and analysis techniques could subsequently be applied to 

determine the consistency among these requirements and the 

provided components. In the medical domain, this would allow 

the processes to be evaluated with respect to the medical devices 

and software systems that are employed. A preliminary 

description of such an approach is provided in [1]. To achieve this 

vision will require advances in process modeling, software 

analysis, and system safety. In today's world, processes, software, 

and hardware devices rarely operate in isolation from each other, 

and thus process improvement must be considered in this broader 

system context. 

 

One of the most gratifying aspects of the research described here 

is its suggestion that the approaches, understandings, and 

technologies that the software engineering community has 

developed over the past few decades may have profoundly 

important impacts upon a very broad spectrum of other 

disciplines. We have already seen the potential of the work of our 

community to effect important improvements in medical care. We 

can see glimpses of applicability in such other domains as law, 

government, manufacturing, and fundamental scientific research. 

No less gratifying is the sense that grappling with the problems of 

these domains is enriching software engineering research by 

confronting our approaches and technologies with novel 

challenges that promise to ultimately improve the work in the 

software engineering domain as well. 
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