

Software Engineering Technology to
Improve the Quality of Medical Processes

Mahmud Hasan
Department of Computer Science

Jahangirnagar University
mahmud.hasan9776@gmail.com

 Rubaya Ratri
Department of Public Health

Northern Univesity Bangladesh
moniratri05@gmail.com

ABSTRACT
In this paper, we describe some of the key observations resulting

from our work on using software engineering technologies to help

detect errors in medical processes. In many ways, medical

processes are similar to distributed systems in their complexity

and proneness to contain errors. We have been investigating the

application of a continuous process improvement approach to

medical processes in which detailed and semantically rich models

of the medical processes are created and then subjected to

rigorous analyses. The technologies we applied helped improve

understanding about the processes and led to the detection of

errors and subsequent improvements to those processes. This

work is still preliminary, but is suggesting new research directions

for medical process improvement, software engineering

technologies, and the applicability of these technologies to other

domains involving human-intensive processes.

Keywords: Continuous process improvement, process

verification, medical processes

1. INTRODUCTION
This paper summarizes key lessons learned from our initial efforts

to apply the technology and approaches of software validation

and continuous software process improvement to the reduction of

errors in medical care. Medical errors occur frequently and, as

reported in the 1999 Institute of Medicine report, To Err is

Human [15], preventable errors in hospitals alone cause at least

97,000 deaths per year in the US.

Our initial work offers considerable promise that software

engineering approaches, originally developed to support software

process improvement, can reduce the incidence of such errors.

This work has also demonstrated that exploration of this domain

is useful in pointing to areas in which software engineering

technologies should be improved.

There is surprising similarity between healthcare systems and

software systems, particularly human-intensive, distributed

system. Healthcare systems typically involve many different

types of human agents (e.g., doctors and nurses with different

specializations and roles, pharmacists, lab technicians, and

support staff), hardware devices (e.g., infusion pumps, radiation

therapy machines, and patient monitoring devices), and software

applications (e.g., computerized physician order entry systems,

decision support systems, and electronic medical records).

Coordination is particularly key in these systems, as humans are

often participating simultaneously in several different processes at

any given time, and their participation in each process may entail

the parallel performance of many different subtasks and

interactions with several different devices and software

applications. In performing these tasks, it is common for

exceptional conditions to arise, requiring specialized actions that

may vary considerably depending upon the circumstances.

Continual change is also a key issue in medical processes.

Changes may result from the introduction of new devices, new

software applications, new personnel, or even personal

preferences. New medical studies may lead to new guidelines or

standards of care. Still other changes come as reactions to errors

that have recently occurred locally. Such changes are usually

made based only on informal analysis of poorly understood

processes. These many parallels between medical processes and

software engineering issues suggest that the software engineering

community has much to offer in the search for ways to improve

healthcare.

The University of Massachusetts Medical Safety project has been

investigating how software engineering technology, originally

developed to improve the quality of software systems, could be

effectively applied to improving the quality of medical processes.

In particular, we have undertaken several case studies intended to

shed light on the applicability to healthcare processes of the

classical Deming Cycle [9] of continuous process improvement

employing software validation tools for error detection. These

case studies have involved developing models of healthcare

processes that are unusually detailed and semantically broad,

American Journal of Science and Engineering | Volume-4, Issue-2 | (www.ajse.us)

AJSE | January, 2024 | © SMART SOCIETY Page 1

analyzing these process models using finite-state verification and

other analysis techniques, and then working with medical

professionals to systematically improve the processes when errors

have been found.

This project is succeeding in providing benefits to both healthcare

and software engineering. The medical professionals involved

have reported that this project has changed the way they view,

describe, teach, evaluate, and improve their processes. Moreover,

several serious problems have been uncovered and the medical

processes have subsequently been improved. There have also

been benefits to software engineering in that it has been necessary

to enhance the technologies we have used in ways that should also

improve their effectiveness when applied to software systems.

Moreover, we now have a new perspective on software

development, particularly for human-intensive systems.

2. APPROACH
The very broad outlines of our approach had been suggested in

some earlier work [18, 19] that proposed that processes share

many of the characteristics of application software and that

technologies for the analysis and continuous improvement of

application software might be usefully applied to processes.

Applying these technologies to processes in domains other than

software engineering was also suggested in [19]. The work we

describe here provides substance and preliminary confirmation to

these earlier suggestions.

The approach to process improvement that we have been

developing is based on creating detailed, semantically rich

models of the processes and then applying a number of different

analysis techniques to try to detect errors in those processes. The

analysis techniques not only detect errors, but also provide

feedback about the source of the errors that can then be used to

help determine how the processes should be improved. With help

from the medical professionals, who in this case are the domain

experts, computer scientists create the models and apply the

analysis techniques to those models. When a defect is found in a

process model, it needs to be examined carefully to determine if

the problem is associated with our representation of the process,

with any analysis artifacts, or if it is indeed an error in the

process. If it is the latter, then domain experts propose

modifications to the processes, often with the help of computer

scientists who can explain the source of the problem and point out

alternative solutions. The model of the modified process is then

carefully reevaluated to assure that it has successfully dealt with

the uncovered error and has not introduced new errors that violate

the current stated requirements. With this approach, several

alternative models can be considered and evaluated before a

decision is made about the way the actual process should be

modified. We have already had some experiences in which

process model improvements were translated almost immediately

into changes to actual medical processes. Thus, this approach

provides a technological basis for process improvement applied

not just to healthcare systems but also more broadly to other

classes of human-intensive systems.

The medical community has tried to model and evaluate its

processes for decades, and there is an industry devoted to helping

hospitals to do so. Some of the medical professionals involved in

our project had experiences with such efforts, which made them

skeptical about the value of process modeling. But the greater

specification breath and detail of our process modeling approach

and the feedback obtained from rigorous analysis have led to

valuable insights and process improvements so that they now feel

the effort needed to create these models is warranted. The insights

gained and the benefits of this approach have been described from

both the medical perspective [12, 13], and from the computer

science perspective [5-7, 20]. Here we present some observations

that derive from our experiences using software engineering

modeling and analysis techniques to create, validate, and improve

medical processes.

Our project has been using specific software technologies to gain

a deep understanding of medical processes and the nature of

medical process improvement problems. Specifically, we are

using the Little-JIL [2] process definition language to model the

processes, the PROPEL [8, 21] property requirements engineering

system to help elucidate and represent properties, and the

FLAVERS [11] and SPIN [14] finite-state verification systems to

detect defects in the Little-JIL process definitions and in the

actual medical processes. Our recent work has also suggested that

other analysis techniques, such as simulation and fault-tree

analysis, might yield useful results. In this paper, we refer to

specific features of these technologies, but use them as the basis

for observations intended to be more broadly applicable to other

technologies. While we have found the technologies that we have

used to be effective in some ways, our experiences with them are

more intended to form the basis for suggestions about the

fundamental needs in this domain and about requirements for

better technologies.

2.1 Modeling Processes
Process Modeling Language: Our use of the Little-JIL process

definition language in this project has suggested the importance of

certain features such as support for abstraction, hierarchical

decomposition, concurrency, exception handling, and

operations designed to support the flexibility that human agents

expect for doing their tasks (e.g., non-deterministic choice). In

addition, it is important that the language have well-defined

semantics so that process models described in the language can

be rigorously analyzed.

To illustrate the kind of detailed modeling we are employing in

this project, Figure 1 depicts a Little-JIL definition (where the

term “definition” is used by Little-JIL to denote the more detailed,

semantically rich models that can result) addressing a portion of a

chemotherapy process. This figure and the ensuing description are

only intended to give the reader a sense of the language; full

details about the language can be found elsewhere [23]. A Little-

JIL definition is centered on a coordination diagram of the

process, such as the one shown in Figure 1, which defines the

hierarchical task decomposition of the task being modeled. This

hierarchical decomposition view of the process is a relatively

natural structural representation that, nevertheless at times, can

obscure some of the complicated control flow that is also being

represented.

The coordination diagram in Figure 1 is a view of only the top-

level process tasks, represented as steps (denoted in the diagram

as nodes, called step bars). In this figure, the root step is

American Journal of Science and Engineering | Volume-4, Issue-2 | (www.ajse.us)

AJSE | January, 2024 | © SMART SOCIETY Page 2

Figure 1. Top-level chemotherapy process definition in Little-JIL.

decomposed into two substeps executing in parallel (indicated by

the equal sign in the step bar). Each substep can be further

decomposed, or elaborated, down to the leaf steps, for which the

process definer is unable to, or uninterested in, providing further

detail. The first substep, prepare for and administer

first cycle of chemotherapy, of the root step

chemotherapy process, is decomposed into six substeps to

be executed in sequence (indicated by the arrow pointing to the

right in the step bar). Each step includes a specification of the

type of agent, that is the type of participant who is to perform the

tasks associated with each step, such as the type of doctor or

nurse, hardware device, or software application. Specification of

the agents, resources, artifacts, and some other features of the

language as well as further decomposition of the steps in the

diagram are not shown here.

Figure 1 also shows that the root step chemotherapy

process has a substep consider alternative

treatment that acts as an exception handler (indicated by the

``X'' on the chemotherapy process step bar to which the

step consider alternative treatment is connected).

In the step perform consultation and assessment, if

the doctor determines that the patient's pathology report does not

indicate cancer, the Pathology Report Does Not

Indicate Cancer exception is thrown (the elaboration of the

perform consultation and assessment step is not

shown). A thrown exception propagates control up the step
decomposition tree until it reaches a matching handler. Thus,

control is transferred to the exception handler step consider

alternative treatment where appropriate action is

specified.

While step-sequencing specifications provide control over the

order of step execution, Little-JIL also enables specification of

synchronization through such constructs as a channel. In this

figure, a channel is used to specify that a doctor cannot dictate a
consult note before evaluating the patient's condition. But,
because a consult note is primarily used for billing and legal
purposes, the doctor may choose to dictate the consult note at any
time after evaluating the patient, for example while the tasks in
prepare for and administer first cycle of

chemotherapy are already underway. This step sequencing

flexibility is captured by the coordination diagram in Figure 1, in
which “consultation channel'“ (represented iconically as an
annotation attached to the circle above the root step,

chemotherapy process), is counted on to deliver a consult

note to the step dictate consult note, which cannot start

until after the arrival of the consult note artifact. The perform

patient consultation step, which is not shown, is a

substep of the perform consultation and

assessment step and is the source of this artifact. Thus, this

example shows that the dictate consult note step can

potentially execute in parallel with tasks in prepare for and

administer first cycle of chemotherapy, but only

after receiving the appropriate paperwork.

Process Modeling and Elicitation: Carefully modeling

processes leads to better understanding about those processes. It

was not unusual to find that the medical professionals did not

fully understand the processes in which they were participants.

Usually they knew their tasks, but often had misunderstandings

about what others involved in the process actually did or how

artifacts were used. By understanding the process better, errors in

the process sometimes become apparent. Thus, the activity of

modeling a process often leads to the discovery of process errors

and always leads to better understanding.

A multifaceted language that separates out the different issues

that need to be addressed facilitates process elicitation. The

Little-JIL language is multifaceted in that the step definition has

many different aspects, each of which can be considered

American Journal of Science and Engineering | Volume-4, Issue-2 | (www.ajse.us)

AJSE | January, 2024 | © SMART SOCIETY Page 3

separately. Thus, for example, in defining a step in the process,

one has to consider the preconditions, the postconditions, the

exceptions that could be thrown or handled by the step, the

artifacts that are input to or output from the step, resources that

might be requested or released, which agents should execute the

step, the substeps that comprise the step, and the order in which

these substeps should be executed. It is not necessary to consider

all of these facets at once. In our project, a first pass was made at

understanding and representing the process only involving step

decomposition and control flow. Later passes through the process

would then address other facets. Adding these additional facets,

however, often resulted in changes to the overall step

decomposition and control flow. Such changes are unavoidable,

since as noted above, the domain experts were often not sure of

the details of the process and had to consult with others involved

in the process work or reevaluate their own process activities.

From the above list of facets, it is clear that Little-JIL supports the

specification of a relatively broad range of semantic features of a

process. This proved to be of considerable importance, as we

found that the medical processes we wanted to define required

strong semantic support for specifying such aspects as

concurrency, exception handling, scoping, late binding, and

flexible control flow that supported the freedom of choice often

desired by human agents. Thus, the language supported detailed

specification of how exceptional conditions are identified and

handled, how parallel tasks must be synchronized, and how the

assignment of personnel to tasks is indeed late-bound. On the

other hand, the language did not insist that an ordering be

imposed on selecting which substep to do next, if such an

ordering was not actually required in the real process. This

flexibility allowed us to define processes that more closely and

completely modeled how they are actually performed. Having

more accurate, complete, and detailed process definitions allowed

for more meaningful and accurate analysis, as described further in

the next subsection.

Abstraction and hierarchical decomposition facilitates

developing the process models incrementally. The process

modelers had to continually make choices about how many levels

to which to decompose a task and the level of abstraction or

granularity of that decomposition. Abstraction allows the

activities associated with a task to be conceptualized. When it

turned out that more detail was required, some tasks were then

further decomposed so that these details could be elaborated. This

allowed for incremental development of the model, and as

discussed in the next subsection, allowed for incremental analysis,

which provided incremental feedback.

Process Comprehensibility: With the inclusion of the different

facets described above, the detailed process definitions quickly

became large and complex. Even seemingly simple processes,

such as “verify a patient's ID”, became unexpectedly large when

the many variations of the process were defined. Some of our

processes involved hundreds of steps, with all the facets of each

step completely defined. To assist with this modeling and with

comprehension, abstraction and hierarchical decomposition are

extremely important. Any step in Little-JIL can be referenced

many times, very much as though a step is a method call. A step,

therefore, becomes an abstract representation of its definition,

which for a non-leaf step is based on its hierarchical

decomposition. Computer scientists are familiar and comfortable

with these concepts, but we found that the domain experts had to

be taught these concepts and their benefits.

Step decomposition in Little-JIL is a significant aid in

understanding the basic breakdown of a task, but can also be

somewhat misleading since the flow of control in Little-JIL is

superimposed on the step decomposition view. For example, a

parallel step may have several children, each of which can be

further elaborated. This may appear to define only a simple task

decomposition, but it also actually specifies that the execution of

the descendant steps of one subtree can be interleaved with the

execution of the descendants of the others. Thus on the positive

side, Little-JIL succinctly and, from some perspectives, clearly

represents these complicated potential traces. On the negative

side, few domain experts (and probably many computer scientists)

could be expected to completely grasp the complexity of what is

being described.

The process definitions needed to be reviewed carefully and

repeatedly by the medical professionals to assure that the

definitions represented the actually processes appropriately. Thus,

it is important that domain experts be able to understand, although

it is probably not necessary that they be able to develop, the

process definitions. Little-JIL coordination diagrams provide a

visual spatial representation, as shown in Figure 1, that shows the

step decomposition. The editing tool used to develop these

diagrams can assist in efforts to understand process definitions by

allowing the viewer to select the facets that are to be explicitly

shown and by providing wizards that furnish more detailed

information about steps and check for simple well-formedness.

On the one hand, we were pleasantly surprised at how well some

of the medical professionals learned the process definition

language and were able to comprehend the Little-JIL process

definitions. On the other hand, this comprehension was sometimes

superficial. Thus, additional support is needed for domain experts

to understand the process definitions. There are many alternative

representations to help with model understanding that should be

explored. For example, a role based view that shows the activities

for a type of agent, such as the triage nurse, might be effective.

We have experimented with creating a natural language, textual

representation of the process definition. An example of a

hyperlinked, textual representation for part of the process shown

in Figure 1 is shown in Figure 2. As with the spatial

representation, the viewer should be able to determine which

facets of the process definition should be described and have

some control over customizing the phrases that are used.

Although a textual description did not address all the concerns

about comprehensibility, the medical professionals greatly

appreciated having a textual representation available for review.

2.2. Analyzing Processes
Analysis is a cornerstone of our approach. In fact, if the system is

interesting enough to warrant being modeled then the model is

probably complex enough to warrant careful scrutiny by

rigorous and automated analysis techniques. Without such

scrutiny one should have serious concerns about the validity of

the model and any decisions made based on that model. Thus as

mentioned above, to support rigorous analysis, the semantics of

the modeling language must be formally and precisely defined.

American Journal of Science and Engineering | Volume-4, Issue-2 | (www.ajse.us)

AJSE | January, 2024 | © SMART SOCIETY Page 4

Figure 2. Hyperlinked, textual view of part of the process shown in Figure 1.

Even with careful analysis, complex processes represented by

detailed models are bound to contain defects, just as most

interesting programs are bound to contain defects. Since we are

creating models on which to base decisions and further reasoning,

enough to justify this trust. As the models are repeatedly validated

using a range of analysis techniques, we increase our confidence

in their accuracy. Moreover, if decisions made using the models

then fail to provide the expected results, that too is a form of

validation that should result in carefully scrutiny to determine the

cause and subsequent improvement to the model. Thus, users of

the model must recognize this limitation and evaluate

recommendations derived from the model carefully, especially

when dealing with life-critical processes, such as many medical

procedures.

The analyses that we have been considering include finite-state

verification to determine if all traces through a model adhere to

properties that indicate the legal sequences of events (e.g., [11,

14]), fault-tree analysis to reveal vulnerabilities if steps in the

process are not executed appropriately [22], and discrete-event

simulation [17] to determine the aggregate behavior after a large

number of traces have been executed. These are by no means all

the kinds of analyses that should be considered, but each is

substantially different and provides distinctive kinds of feedback.

Since we have the most experience with finite-state verification,

here we emphasize our observations from those experiences. A

more thorough description of our experiences applying finite-state

verification to medical processes is given in [5].

Property Specification: Before applying finite-state verification,

we first needed to determine the properties of the system that

should be evaluated. We usually started with medical guidelines

that we first restated as high-level requirement statements, being

careful to use consistent terminology. For example, “administer

chemo” might have a different meaning depending on the part of

the process that is being described by the guidelines. These

requirements are usually described at such a high-level of

abstraction that they are process-independent, meaning that a

wide range of approaches could be used to satisfy them. Although

this makes them generally applicable in many different settings, it

is usually difficult to determine what is actually required for them

to be satisfied. For example, a high-level generic property for

most medical processes is: “Do the right procedure, on the right

patient, at the right time.”

Working with the medical professionals, we translated each high-

level property into a set of more specific and measurable

requirement statements. Determining if it is the “right patient”, for

example, might require checking that the name on the ordered

medical procedure matches the name on the wrist-band ID,

matches the name on the medical chart, and matches the name

and date of birth provided by the patient (assuming the patient is

conscious and speaks and understands the same language as the

medical professional checking the ID). For this second level of

refinement, we were also careful to use the terms defined in a

glossary, adding terms when necessary.

These refined requirements were still not precise enough to form

the basis for verifying the processes, however. The patient ID

verification example, raises questions such as “when does the

patient ID need to be checked?”, “do all three checks have to

happen in any particular order?”, and “can other events happen in

between checking the patient chart and checking the patient ID?”

The Propel system was designed to help elicit these types of

details from domain experts and then to represent them as a finite-

state automaton that can serve as the basis for finite-state

verification. These low-level, detailed, and narrowly focused

requirement specifications are frequently called properties. Before

verification could be done using these properties, the events

mentioned in the properties had to be mapped to events in the

process.

1. Chemotherapy Process

To perform the chemotherapy process, the medical professionals involved should, in no required order, prepare for and

administer first cycle of chemotherapy and create and process consult note.

The medical professionals, however, cannot start create and process consult note before perform patient

consultation (a substep of perform consultation and assessment) has completed.

2. Prepare for and Administer First Cycle of Chemotherapy (substep of Chemothereapy Process)

To perform this step, the medical professionals involved must have the biopsy, the pahtolgy report and the patient

chart.

To prepare for and administer first cycle of chemotherepy, the medical professionals involved should perform, in

order, each of the following steps:

a. Perform consultation and assessment

b. Perform initial review of patient records

c. Perform pharmacy tasks

d. Perform patient teacing

e. Perform final tasks (day before chemo)

f. Perform first day of chemo tasks

If during perform consultation and assessment, the medical professionals find out that the pathology report does not

indicate cancer, the attending MD should consider alternative treatment. In this case, after successful completion of

the step consider alternative treatment, the step chemotherapy process is considered complete.

American Journal of Science and Engineering | Volume-4, Issue-2 | (www.ajse.us)

AJSE | January, 2024 | © SMART SOCIETY Page 5

Figure 3. Screen shot of the PROPEL question tree and finite-state automaton templates used

during the development of a property.

This mapping was usually straightforward, but needed to be done

with care, since an event in the property might map to different

events in the process definition. Taken together, these properties

and the bindings of event names to step names provided a detailed

and rather process-specific description of the overall requirements

for the process.

To represent the properties, Propel provides templates for

commonly occurring verification property patterns [10]. These

templates explicitly indicate the options that need to be

considered for each pattern. In some ways, this is similar to the

facets of the Little-JIL process modeling language since, like the

facets, they remind the user of the many different concerns that

must be taken into consideration. Propel provides the specifier

with three alternative representations of the templates:

disciplined, natural language text where the options are

represented as phrase choices; finite-state automata graphs where

options are represented by optional transitions, labels, and

accepting states; and by question trees that first select the

appropriate pattern based on answers to a few initial questions,

but then continue to pose questions about all the options

associated with the selected pattern template. Figure 3 provides an

example of the finite-state automaton view and the question tree

view for a simple property that was developed to assure that there

is a signed consult note in the patient's record before

chemotherapy is administered.

The medical professionals initially had difficulty understanding

the difference between a process model, an operational view, and

a requirement or property specification, a goal-oriented view.

Moreover, the medical professionals tended to think in terms of

“war stories” about what went wrong. We could sometimes map

such a story to an appropriate set of properties. More work is

definitely needed to determine how to better exploit these war

stories, which are examples of scenarios that led to process errors.

Developing the properties provided valuable feedback about the

current process model. We usually started developing the process

models before the properties, based on the medical guidelines and

the information provided by the medical experts who were

working with us. We made note, however, of any requirements

that were mentioned during this process elicitation. Those

requirements, plus existing guidelines or protocols, were the

initial set of high-level requirements. We also asked the medical

professionals to suggest other, perhaps unstated but important,

properties. In these discussions, it was not uncommon for medical

professionals to propose requirements about details that were not

even represented in the current process models, even though the

medical professionals making the suggestion might have been

working with us for months on developing these models. Clearly,

concentrating on the requirements provided a different

perspective, one focused on the intent of the process. We decided

that if a requirement was important enough to be stated, that the

models should be developed to the point where the tasks relevant

to that requirement are actually represented and can be reasoned

about during analysis. Thus, for example, we usually decided not

to model the low-level details about how a form is to be filled out.

On the other hand, since patient ID errors are common and often

serious, details about how to check patient ID were added to the

process models after requirements about this aspect of the process

arose. Thus, what was deemed important by the domain experts

American Journal of Science and Engineering | Volume-4, Issue-2 | (www.ajse.us)

AJSE | January, 2024 | © SMART SOCIETY Page 6

determined the scope and granularity of the process models and

the requirements for those models.

The properties that we specified and verified were primarily

concerned that specific sequences of events did (or did not) occur.

Occasionally we encountered a few properties concerned with

state information, which, as is usually done, we dealt with by

creating events that set or check a value. We encountered few

properties that were concerned with timing events. One such

example is the need to use or return a unit of blood within a set

time period. There were a number of properties, however, that

were concerned with efficiency, since inefficiency can impact

patient safety. For example, a property might be that there is a

check on the patient's ID before a critical procedure is performed.

On the other hand, we might also want to check that no more that

“N” such checks are performed before the procedure, since

processes that have excessive checks are inefficient (and

ineffective since the medical professionals may become lax about

performing checks if they are deemed to be excessive.) In [5] an

example with a richer sequence of events is used to determine if

the process is inefficient. This property was based on a nurse's

intimate knowledge of the process and where inefficiencies often

arise.

Issues surrounding the specification and handling of exceptions

have been particularly interesting, and often problematic. Most

of the errors that we have found in the process models and in the

processes themselves involve exceptions. This is not surprising

since studies have shown that errors are most likely to occur

during the handling of exceptional cases. Medical guidelines,

however, often do not even indicate what is to be done in such

situations. This leads to variation in how medical professionals

respond to these situations and, consequently, is more likely to

lead to errors. From a technological point of view, the analysis

tools that we used should be significantly improved to handle

exceptional cases better. For example, often the properties were

wrong because exceptional cases were not taken into account.

That is, the property was stating what was expected only if no

exceptions arose. Better support for indicating when exceptional

and non-exceptional situations are to be considered in the

property specifications should be explored.

Finite-state Verification: Finite-state verification problems are

known to often explode in size, making it impractical to analyze

large systems. Thus, we employed a number of optimization

techniques when creating the internal representation of the Little-

JIL process definitions. These optimizations are conservative but

often reduce the size of the model by introducing some

imprecision. The consequences of this imprecision are that the

counter example traces through the internal model that violate the

property may not correspond to actual executable traces through

the process model. Thus, they are a false positive or spurious

indication of an error. It is interesting to note that in our analysis

of Little-JIL processes, spurious error reports hardly ever

occurred. We believe that this is because this process language

mostly describes control and event flow and does not represent

compound objects or references to such objects using aliasing,

which are known to degrade the results of static analysis.

Moreover, unlike programs, most of the traces through our

process models tended to correspond to actual executable

behavior. Although this is a known benefit associated with

analyzing high-level designs, it is interesting to see that it also

applies to the detailed models provided by a process definition

language, such as Little-JIL.

Using finite-state verification, we mostly found errors in the

process models, as opposed to errors in the actual processes

themselves. Although this might seem somewhat disappointing,

as noted above, validating the models is an important part of

process improvement. Before process models can be used for

decision-making, they should be carefully validated. Using

analysis techniques, we found numerous defects in our process

models, but we also found some interesting and subtle errors in

the actual processes that could have serious consequences.

Analysis of the process models were also useful in helping to

determine the causes of these errors and in evaluating alternative

potential solutions for correcting them.

The set of property specifications associated with a process

model continued to grow as the process was modified, as defects

were found in the process models, and as errors were found in

the processes themselves or in the clinical setting. This set of

properties was invaluable. It provided a baseline set of

requirements against which to verify the process models after any

change. As this collection grew, we gained more confidence in

the requirements and in the processes that adhered to these

requirements. We suspect that domain experts will be more

willing to consider process improvements knowing there is a

detailed model of the process and its properties that can be used to

evaluate those improvements,

Other analyses: As mentioned above, we intend to use the

process models as the basis for a range of analysis techniques.

Two techniques that we have initially explored are fault-tree

analysis and discrete-event simulation. Fault-tree analysis creates

a tree representation of how a hazard could occur in terms of what

would need to fail or be faulty. The trees are then translated into

Boolean flow equations that can be evaluated to determine

minimum cut sets. Each minimum cut set indicates the collection

of failures that would have to occur together for the hazard to

arise. Historically fault trees have been used in traditional

engineering disciplines such as mechanical engineering (although

Leveson [3, 16] and others has also explored their use in systems

engineering). In this prior work, fault trees tended to be large and

were usually created by a team of safety experts. One of the

drawbacks of this approach is that it is difficult to be sure that

fault trees created in this way are sufficiently complete and

accurate. We have demonstrated that fault-trees can be derived

automatically from Little-JIL process definitions, using a template

for each step kind and facet of the language [4]. The resulting

fault trees are surprisingly large and complicated. Although one

could argue that the fault trees derived from a process model may

also be inaccurate if the process model is inaccurate, the process

model is significantly simpler than the derived fault tree.

Moreover, the process model should have first undergone

rigorous validation before the corresponding fault-tree was

generated and analyzed. In addition, a single, carefully validated

process model can be used to derive a very large number of fault

trees, namely a different one for each hazard to be studied. To

give a sense of the complexity and size of these trees, a fault tree

for a single hazard derived from a blood transfusion process is

given in Figure 4.

American Journal of Science and Engineering | Volume-4, Issue-2 | (www.ajse.us)

AJSE | January, 2024 | © SMART SOCIETY Page 7

Figure 4. Example of a fault tree for a single hazard derived from a medical process.

We have also been experimenting with using the process models

to drive discrete-event simulations. Simulations can be used to

evaluate performance and efficiency. For our emergency room

case study, one of the issues is how to determine the best resource

mix that delivers optimal flow and minimal waiting times. For

example, would it be better to hire more nurses, more doctors, or

add more beds to reduce waiting time for patients? Here again, we

suspect that our more detailed and validated model will be a better

foundation for considering these issues than the high-level models

that are currently used for simulation.

3. Conclusion
We have described how software engineering technologies and

approaches can be incorporated into a Deming Cycle of

continuous improvement to medical processes. This approach

entails creating a process model that is detailed and addresses a

broad range of semantic issues, extensively analyzing that model

to validate that it is a reasonable basis for making decisions about

the real process, and then using the validated model to detect

errors and other problems in the actual process, with the eventual

goal of improving that process. This approach to process

improvement is being evaluated by applying it to critical

processes from the medical domain. Currently we are involved in

three case studies, emergency room flow, blood transfusion, and

chemotherapy administration, each of which has different

characteristics and places different demands on the supporting

technology that we are developing. This work has led to a number

of observations that seem particularly important.

The choice of a modeling language should depend on what one

wants to do with the model and the process. In our case, we want

to reason about how medical errors can occur, and how to guard

against them. To be the basis for definitive reasoning the process

modeling language itself must have well-defined semantics. But if

the reasoning is to be relevant to a real-world process, then the

language must also be capable of capturing in detail all aspects of

the way in which the process might be performed. This dictates

the selection of a process modeling language that allows fine-

grain details to be represented. But, the language also needs to

support the specification of such semantics as complex control

flow, concurrency, exception handling, and scoping. While being

quite precise about such issues, the language must also provide

for the flexibility desired by humans.

Needing to deal effectively with each of these semantic issues

creates challenges for a process language. Exception handling, for

example, is an important element in human-intensive systems, but

specifying it adds complexity both to the process and to the

process model. Often process descriptions are not clear about

what exceptional situations might arise and how to deal with them

if they do. In the medical domain, this can be a source of wide

variation in behavior, which is undesirable and often leads to

errors. Once the exceptional conditions and how to handle them

are determined, this information needs to be represented in the

model, which itself can be difficult to do with most process

modeling languages. Even with a supportive language, such as

Little-JIL, representing exceptions has proven to be tricky and

error prone. Exceptions also complicate the specification of

requirements and any analysis being applied. We found that they

were a major source of errors in the models and in the actual

processes.

Additional specification complexity is added when the model

incorporates execution semantics. Our work has the eventual goal

of using executing process definitions to provide coordination

support and proactive guidance to humans. This should not be

American Journal of Science and Engineering | Volume-4, Issue-2 | (www.ajse.us)

AJSE | January, 2024 | © SMART SOCIETY Page 8

undertaken unless these process models have been extensively

analyzed. Our experience has indicated, however, that there are

considerable challenges in developing an executable process

language that has sufficient clarity, semantic breadth, and

capacity for detail.

In our opinion, if a process is complicated enough to warrant

precise and detailed modeling then the accuracy of the model

requires careful scrutiny. This is particularly true for detailed

models, such as the models we are developing using Little-JIL.

Our experience suggests that these sorts of detailed and complex

process models should be developed incrementally so that high-

level, more-abstract views of the process can be validated before

more-detailed models are developed. The scope and granularity of

the model should be determined by the questions the model is

intended to address. There is no doubt that detailed models

require more effort to develop and maintain, but provide more

definitive, in-depth feedback (in other words, there is no free

lunch). But, our work has been quite satisfying in that the

detailed process models and the analysis that we have applied

have indeed discovered errors in actual medical processes. Indeed

every step in this approach, from process modeling, to property

specification, to process model verification has led to the

discovery of errors of one kind or another in the actual processes.

Future work: This work has already suggested many directions

for future research. A number of these directions are suggested

by attempts to use process models to introduce automation. As

already noted, we would like to eventually use validated process

models to guide medical professionals while they are actually

executing their processes in a clinical setting. For example, a

doctor's hand held device could indicate the current process status

for each patient and highlight the most urgent items according to

the most recent recommended protocols. There are human

interface issues in how to represent this information on the

handheld device so that it can be immediately understood and

used. There are other interesting issues in how to determine and

maintain coherence between the actual process and the process

model.

One of the most frequently asked questions is what is the cost in

terms of time and effort to elicit and evaluate a process. To date,

all the process models were developed and analyzed concurrently

with technology development and involved students who were

learning about using that technology. It would be interesting to

assess the cost of having trained computer scientists work with

medical professionals on complex processes to experimentally

evaluate the costs and error detection effectiveness. Related

questions revolve around the generalizability of medical processes

and the degree to which each hospital might have to create its

own hospital-specific process models. We believe, that for well-

designed process models, the customization of a general process

to a particular hospital setting should mostly involve changes to

the low-level process steps. This hypothesis needs to be

evaluated. Moreover, there is the issue of how many processes

would need to undergo such careful modeling and validation. In

the medical domain, it has been suggested that the number of such

processes may be surprisingly small, in which case it would not

be infeasible to develop models of each of these if this approach

were to be found to indeed reduce the number of medical errors

and help improve the efficiency of medical care. Medical

protocols change frequently, however, so at least the generic

versions of these models would need to be updated regularly and

then recustomized. Clearly there are interesting issues about how

to do this efficiently and accurately. As noted above, process

models could be used to provide guidance during real execution

of the process. In addition, they seem to hold considerable

promise as teaching aids. Both are important when processes are

being changed frequently. It is currently difficult for medical

professionals to stay up-to-date on the latest recommended

protocols without such assistance. Providing updated process

models that can provide on-line guidance would help address this

problem.

Finally, we note that the proposed approach does not seem to be

specific to any particular set of technologies or restricted to any

particular domain. We have demonstrated its effectiveness by

using a specific modeling language and set of analysis tools, but

other languages and tools could be used as well to support process

improvement. We have tried to indicate the requirements for these

capabilities. The medical domain has proven to be an interesting

and challenging domain, and an important one to address, but we

believe the approach is applicable to many domains, especially

those that rely importantly upon complex, human-intensive

processes.

Going further, we now envision a new paradigm for system

development and improvement that is driven by a detailed

understanding and evaluation of a coordination model that

provides the context in which application software and hardware

devices will be used. Evaluation of this model could be used to

derive context requirements for the software and hardware

devices, and analysis techniques could subsequently be applied to

determine the consistency among these requirements and the

provided components. In the medical domain, this would allow

the processes to be evaluated with respect to the medical devices

and software systems that are employed. A preliminary

description of such an approach is provided in [1]. To achieve this

vision will require advances in process modeling, software

analysis, and system safety. In today's world, processes, software,

and hardware devices rarely operate in isolation from each other,

and thus process improvement must be considered in this broader

system context.

One of the most gratifying aspects of the research described here

is its suggestion that the approaches, understandings, and

technologies that the software engineering community has

developed over the past few decades may have profoundly

important impacts upon a very broad spectrum of other

disciplines. We have already seen the potential of the work of our

community to effect important improvements in medical care. We

can see glimpses of applicability in such other domains as law,

government, manufacturing, and fundamental scientific research.

No less gratifying is the sense that grappling with the problems of

these domains is enriching software engineering research by

confronting our approaches and technologies with novel

challenges that promise to ultimately improve the work in the

software engineering domain as well.

4. ACKNOWLEDGMENTS
Many people have made contributions to the work described here.

We would particularly like to thank Dave Brown, Lucinda

American Journal of Science and Engineering | Volume-4, Issue-2 | (www.ajse.us)

AJSE | January, 2024 | © SMART SOCIETY Page 9

Cassels, Bin Chen, Stefan Christov, Rachel Cobleigh, Heather

Conboy, Elizabeth Henneman, Philip Henneman, Wilson

Mertens, and Sandy Wise,

5. REFERENCES

1. G. S. Avrunin, L. A. Clarke, E. A. Henneman and L. J.

Osterweil Complex Medical Processes as Context for

Embedded Systems. ACM SIGBED Review, special issue on

Workshop on Innovative Techniques for Certification of

Embedded Systems, 3 (4). 9-14.

2. A. G. Cass, B. S. Lerner, E. K. Mccall, L. J. Osterweil, S. M.

Sutton Jr. and A. Wise, Little-JIL/Juliette: A Process

Definition Language and Interpreter. in 22nd International

Conference on Software Engineering, (Limerick, Ireland,

2000), 754-758.

3. S. S. Cha, N. G. Leveson and T. J. Shimeall, Safety

Verification in Murphy Using Fault Tree Analysis. in 10th

International Conference on Software Engineering,

(Singapore, 1988), 377--386.

4. B. Chen, G. S. Avrunin, L. A. Clarke and L. J. Osterweil,

Automatic Fault Tree Derivation from Little-JIL Process

Definitions. in Software Process Workshop and Process

Simulation Workshop, (Shanghai, China, 2006), Springer-

Verlag LNCS, 150-158.

5. B. Chen, G. S. Avrunin, E. A. Henneman, L. A. Clarke, L. J.

Osterweil and P. L. Henneman, Analyzing Medical

Processes. in 30th International Conference on Software

Engineering, (Leipzig, Germany, 2008), to appear.

6. S. C. Christov, B. Avrunin, G.S., Chen, B., Clarke, L. A.,

Osterweil, L.J., Brown, D., Cassells, L., Mertens, W.,

Rigorously Defining and Analyzing Medical Processes: An

Experience Report, in Workshop on Model-Oriented

Trustworthy Health Information Systems (MOTHIS),

(Nashville, TN, 2007). (to appear in LNCS Volume on

Models in Software Engineering Workshops and Symposia

at MoDELS 2007, Reports and Revised Selected Papers,

Editor: Holger Giese)

7. L. A. Clarke, Y. Chen, G. S. Avrunin, B. Chen, R. Cobleigh,

K. Frederick, E. A. Henneman and L. J. Osterweil, Process

Programming to Support Medical Safety: A Case Study on

Blood Transfusion. in Software Process Workshop 2005,

(Beijing, China, 2005), Springer-Verlag, 347-359.

8. R. L. Cobleigh, G. S. Avrunin and L. A. Clarke, User

Guidance for Creating Precise and Accessible Property

Specifications. in 14th ACM SIGSOFT International

Symposium on Foundations of Software Engineering,

(Portland, OR, 2006), 208-218.

9. W. E. Deming Out of the Crisis. MIT Press, Cambridge,

1982.

10. M. B. Dwyer, G. S. Avrunin and J. C. Corbett, Patterns in

Property Specifications for Finite-State Verification. in 21st

International Conference on Software Engineering, (Los

Angeles, CA, 1999), 411-420.

11. M. B. Dwyer, L. A. Clarke, J. M. Cobleigh and G.

Naumovich Flow Analysis for Verifying Properties of

Concurrent Software Systems. ACM Transactions on

Software Engineering and Methodology, 13 (4). 359-430.

12. E. A. Henneman, G. S. Avrunin, L. A. Clarke, L. J.

Osterweil, C. J. Andrzejewski, K. Merrigan, R. Cobleigh, K.

Frederick, E. Katz-Basset and P. L. Henneman. Increasing

Patient Safety and Efficiency in Transfusion Therapy Using

Formal Process Definitions. Transfusion Medicine Reviews,

21 (1). 49-57.

13. E. A. Henneman, R. Cobleigh, G. S. Avrunin, L. A. Clarke,

L. J. Osterweil and P. L. Henneman Property Specification to

Improve the Safety of the Blood Transfusion Process.

Transfusion Medicine Reviews. to appear.

14. G. J. Holzmann The SPIN Model Checker. Addison-Wesley,

2004.

15. L. T. Kohn, J. M. Corrigan and M. S. Donaldson (eds.). To

Err is Human: Building a Safer Health System. National

Academy Press, Washington DC, 1999.

16. N. G. Leveson Safeware: System Safety and Computers.

Addison-Wesley, 1995.

17. J. Misra Distributed Discrete Event Simulation. ACM

Computing Surveys, 18 (1). 29-55.

18. L. J. Osterweil, Software Processes are Software, Too. in

Ninth International Conference on Software Engineering,

(Monterey, CA, 1987), IEEE Computer Society Press, 2-13.

19. L. J. Osterweil, Software Processes Are Software, Too,

Revisited. in 19th International Conference on Software

Engineering, (Boston, MA, 1997), 540-558.

20. L. J. Osterweil, G. S. Avrunin, B. Chen, L. A. Clarke, R. L.

Cobleigh, E. A. Henneman and P. L. Henneman,

Engineering Medical Processes to Improve their Safety: An

Experience Report. in Proceedings of the IFIP Working

Group 8.1 Working Conference on Situational Method

Engineering: Fundamentals and Experiences (Method

Engineering 2007), (Geneva, 2007), Springer-Verlag, 267--

282.

21. R. L. Smith, G. S. Avrunin, L. A. Clarke and L. J. Osterweil,

PROPEL: An Approach Supporting Property Elucidation. in

24th International Conference on Software Engineering,

(Orlando, FL, 2002), 11-21.

22. W. Vesely, F. Goldberg, N. Roberts and D. Haasl. Fault Tree

Handbook U.S. Nuclear Regulatory Commission,

Washington, D.C., 1981.

23. A. Wise. Little-JIL 1.5 Language Report, Department of

Computer Science, University of Massachusetts, Amherst,

2006, 28.

American Journal of Science and Engineering | Volume-4, Issue-2 | (www.ajse.us)

AJSE | January, 2024 | © SMART SOCIETY Page 10

