olume 4 Issue 1

\ é/ 4

N

2 L

= .

American Journal of Science & Engineering

SE)
Socie Makers, I?Lrtists, Researchers\ d Technologists (gw"b >
6408 Eliza b Ave SE, Auburn 98092, Washingto - = |

Issy%s\i-%?,o (Print) and 267]9581 (Online) / \

Editor-in-Chief

Dr. Izzat Alsmadi
Texas A&M, San Antonio, USA

Research Interest: Cyber Intelligence, Cyber Security, Software
Engineering, Social Networks

Bio: Izzat Alsmadi is an Assistant Professor in the department of
computing and cyber security at the Texas A&M, San Antonio. He
has his master and PhD in Software Engineering from North Dakota
State University in 2006 and 2008. He has more than 100 conference
and journal publications. His research interests include: Cyber
intelligence, Cyber security, Software security, software
engineering, software testing, social networks and software defined
networking. He is lead author, editor in several books including:
Springer The NICE Cyber Security Framework Cyber Security
Intelligence and Analytics, 2019, Practical Information Security: A
Competency-Based Education Course, 2018, Information Fusion for
Cyber-Security Analytics (Studies in Computational Intelligence),
2016. The author is also a member of The National Initiative for
Cybersecurity Education (NICE) group, which meets frequently to
discuss enhancements on cyber security education at the national
level.

Editorial Board:

Editor-in-Chief: Dr. Izzat Alsmadi (Texas A&M, San Antonio, USA)

Editor-in-Chief (Emeritus): Dr. Chuck Easttom (University of Dallas, USA & Georgetown
University, USA)

Associate Editor: Dr. Nabeeh Kandalaft (Grand Valley State University, USA)
Board Members:

¢ Dr. Phillip Bradford (University of-Connecticut-Stamford, USA)
e Dr. Lo’ai Tawalbeh (Texas A&M University-San Antonio, USA)
¢ Dr. Doina Bein (California State University, Fullerton, USA)

e Dr. Hasan Yasar (Carnegie Mellon University, USA)

e Dr. Moises Levy (Florida Atlantic University, USA)

e Dr. Christian Trefftz (Grand Valley State University, USA)

Page No.

CONTENT

1-7

Breaking Down Break-It-Fix-It: An Automated Software Repair Replication

Software quality is strongly correlated with the quantity and severity of bugs. While there are a variety of tools,
techniques, and practices to aid production of robust and resilient code, low quality software is draining trillions of
dollars from organizations annually. Meanwhile, debugging and fixing coding errors consumes upwards of half of
developer labor. To say this situation is untenable is an understatement. Fortunately, automated software repair offers
a possible solution. The literature around automated code fixing has been expanding with a variety of implementations
ranging from genetic programming, code translation, and various machine learning algorithms. All report positive
results, however there has not yet been a dedicated effort to measure to what extent the various implementations are
generalizable. Accordingly, we sought to replicate a prominent study in the field in two parts. The first part consisted of
replicating the training of the machine learning model using the source study materials. We found training to be
impossible at first due to package dependencies and missing package files. However, we were able to replicate the self-
repair evaluation. The results were identical to the source study. Later, using a Docker compose file obtained from the
original authors, we were able to replicate BIFI model training and again match outcomes. Overall, based on the
replication outcomes, we offer future leaning recommendations and ideas for future work.

DOI:

Jason M. Pittman (Booz Allen Hamilton, McLean, USA & University of Maryland Global Campus, USA),
Kira Cincotta (Booz Allen Hamilton, McLean, USA), and Rebecca Saul (Booz Allen Hamilton, McLean,
USA)

8-12

Microcontroller based Smart Coil Winder System

The aim of this paper is to develop the control circuit for smart automatic coil winder, which functions with respect to
the PIC Microcontroller program. The conventional coil winding machine winds copper wire on a former and the
former is attached to the iron rod, which is to be actuated manually. Moreover, the manual coil winding machine does
not have any control circuit for the smart functionality. But in this design, the controller has more memory to operate
and save the data and also to improve the winder program. Additionally, it also reduces the time of operation and the
requirement of Manpower. This coil winder control circuit uses PIC Microcontroller (16F887), which runs the winder
system according to main program and also the motor step sequencing program.

DOI:
Dr. A. Rajamani, Ms. N. Saranya (PSG College of Technology, India)

13-17

Programming Language Conversion using NLP

Natural language processing strives to build machines that understand and respond to text or voice data—and respond
with text or speech of their own—in much the same way humans do. NLP models language computationally and deals
with linguistic features of computation. Once a computer learns to do mathematical calculations it can perform many
complex and big calculations much faster than humans. Similarly, once computer starts to understand the human
languages it can process all aspects of that language much faster than humans also opening a large number of
possibility. So it cuts down on employment as one computer is capable of giving an output 10 times faster than a human
can. So it benefits the employer not only financially but also by giving extremely accurate and faster outcome. Here we
lay out an overall architecture to explain the overall processing. So now we take a look at the two general classes of
systems they are special-purpose system and general-purpose system, explaining how they differ and their relative
advantages and disadvantages. After that we point at the few remaining problems that require additional research.
Finally, we conclude by discussing when natural language processing technology can be practically used at various
levels .We also discuss about when it will become commercially practical, and what will be the cost to practically use
this technology.

The techniques specifically developed for analysing and understanding the inner-workings and representations
acquired by neural models of language is EMNLP 2018 BlackboxNLP. The approach includes: investigating the impact
on the performance of neural network on systematic manipulation of input and also testing whether the interpretable
knowledge can be decoded from intermediate representations to propose modifications to make the knowledge state or
generated output more and also to examine the performance of networks on simplified or formal languages.

In the following report we aim to convert a program of a given language to an equivalent program of another language.
For that we have taken help of NLP that is Natural Language Processing. By using Natural Language Tool Kit, we have
successfully identified the variables, datatypes, operators, keywords, indentations. We have also discussed various
aspects and domains of NLP and some real-world applications of it.

DOI:

ABHIJIT BANERJEE, MADHUBAN MUKHERJEE, APARAJITA BANERJEE, MD. AALISHAN RAZA,
SUCHETA BHOWMICK, SAKSHI BHAGAT, SUDIPTA BASU PAL (University of Engineering and
Management, India)

18-24

Smart Waste Bin Monitoring in Municipal Based on IOT for Clean City

Rapid increasing urbanization and increasing population all over the world, there is a dynamic increase in the amount
of waste disposal has become a matter of concern, and diseases like malaria, dengue, and cholera are caused due to
overflow of garbage which contains rotten things which form foul smell and burning things that cause air pollution to
the environment. As a result of this we human beings are sufferers, So, we need to maintain this worst scenario and we
need to keep a track of the garbage bin so that it will be cleaned in the proper interval of time. So, we are implementing
this project which will identify the waste by checking its humidity and temperature and will also check the level of the
garbage bin so that it doesn't overflow and pollute the environment. In this project the garbage level in each bin is
monitored using ultrasonic sensors present in every bin, rotten and burning elements or any such abnormal situation
that arises will be identified by the Gas sensor and DHTI11 sensor. The Gas, ultrasonic sensor, and Humidity sensor
will read the data and will send it to the Cloud server and then the Municipal Control room will be able to monitor the
information from the Cloud server through a GUI interface. When more than 70 percent of the garbage bin is filled, or
any situation mentioned above arises the buzzer will give the indication. The system is driven by a microcontroller-
ESP-32 which is working as the brain of the operation, and it is programmed using Embedded C. All the devices and
Cloud Server plays a key role to implement the project.

DOI:

Sreya Poddar, Tisa Dutta, Sunando Chowdhury, Soumyadeep Mukherjee, Samprikta Mukherjee
(Institute of Engineering and Management, India)

Breaking Down Break-It-Fix-It: An Automated
Software Repair Replication

Jason M. Pittman*', Kira Cincotta*, and Rebecca Saul*
*Booz Allen Hamilton, McLean, VA 30332 USA
fUniversity of Maryland Global Campus, Adelphi, USA

Abstract—Software quality is strongly correlated with the
quantity and severity of bugs. While there are a variety of
tools, techniques, and practices to aid production of robust and
resilient code, low quality software is draining trillions of dollars
from organizations annually. Meanwhile, debugging and fixing
coding errors consumes upwards of half of developer labor. To
say this situation is untenable is an understatement. Fortunately,
automated software repair offers a possible solution. The liter-
ature around automated code fixing has been expanding with a
variety of implementations ranging from genetic programming,
code translation, and various machine learning algorithms. All
report positive results, however there has not yet been a dedicated
effort to measure to what extent the various implementations are
generalizable. Accordingly, we sought to replicate a prominent
study in the field in two parts. The first part consisted of
replicating the training of the machine learning model using
the source study materials. We found training to be impossible
at first due to package dependencies and missing package files.
However, we were able to replicate the self-repair evaluation.
The results were identical to the source study. Later, using a
Docker compose file obtained from the original authors, we
were able to replicate BIFI model training and again match
outcomes. Overall, based on the replication outcomes, we offer
future leaning recommendations and ideas for future work.

Index Terms—software and engineering, automated software
repair, deep learning, replication.

I. INTRODUCTION

OFTWARE Software quality is strongly correlated with

the quantity and severity of bugs. Further, software quality
is commonly understood to be a measure of design practices,
errors per line of code, and testing acumen Misra & Bhavsar
(2003); Abuasad & Alsmadi (2012); Alves et al. (2016). As
it stands, poor quality software led to losses of 2.41 trillion
USD in 2022 McGuire (2022). In light of these facts, it
is natural to wonder why industry simply does not produce
more high quality software. In fact, there are a variety of
tools, techniques, and practices to aid developers and engineers
in product robust and resilient code. However, automation
is limited in two critical areas: debugging and generating
code repairs (i.e., patches) Tufano et al. (2019); Xia et al.
(2022). Bugs and vulnerabilities alike can take days to isolate,
especially in large projects Alhefdhi et al. (2020). Manual
debugging and patching are notoriously tedious job tasks.
Often, software developers spend upwards of 50% of their
time debugging Britton et al. (2013). Moreover, such manual

Manuscript received May 4, 2023; Corresponding author: J. M. Pittman
(email: pittman_jason@bah.com).

interventions have a nonzero probability of regressing source
code or introducing new bugs and vulnerabilities.

Automated software repair Harman (2010); Le Goues et al.
(2013) is one possible solution to the burden of such manual
processes. Indeed, there have been a variety of proposed soft-
ware self-repair implementations such as GenProg Le Goues
et al. (2013), Angelix Mechtaev et al. (2016a), and Neural
Machine Translation Tufano et al. (2019) techniques. More
recently, Yasunaga and Liang introduced Break-It-Fix-It (BIFI)
Yasunaga & Liang (2021). This study is of particular interest
for three reasons. The authors offered a detailed description of
their self-repair implementation. The work also referenced a
full GitHub repository containing source training data, BIFI
code, and trained models. As well, Yasunaga and Liang
specifically recommend future work explore to what extent
BIFI generalizes to other domains. However, Xia et al. Xia et
al. (2022) noted existing literature and the demonstrated self-
repair paradigms therein may have limited generalizability.

One means to explore the generalizability of existing work is
to reproduce the source study. Logically, a replication to verify
results should precede reproduction though Plesser (2018). The
process of replication involves duplicating a research study
using the same techniques, materials, and experimental setup
Lindsay & Ehrenberg (1993); Brooks et al. (1996); Gémez et
al. (2010); Plesser (2018). The purpose is to verify the results
and increase trust in their accuracy and consistency. However,
replication is only feasible if the original research provides a
thorough description of the materials, setup, and equipment
used, enabling another researcher to carry out an identical
investigation. In contrast, reproduction encompasses the act
of recreating a study using various instruments, data sets,
or techniques, with the objective of showing that the results
are not specific to one particular implementation and can be
generalized Lindsay & Ehrenberg (1993); Brooks et al. (1996);
Goémez et al. (2010); Plesser (2018). Additionally, reproducing
a study can also uncover any shortcomings or drawbacks in the
original methodology. Accordingly, the purpose of this work is
to provide a rigorous, scientific replication of BIFI Yasunaga
& Liang (2021).

The rest of this work is organized into four sections. First,
we offer summaries of seminal and relevant related work. Do-
ing so establishes a conceptual framework for this study. Then,
we describe our replication method and how the scientific
inquiry present in this work emerged during the replication.
Next, we present the qualitative and quantitative results of
the replication. This is followed by our recommendations and

ideas for future work.

II. BACKGROUND

We need to describe three general areas of related work to
properly situate this study in the literature. First, we discuss
automated software repair as a field of study. In doing so, we
establish a foundation for conceptualizing the dominant lines
of inquiry present in the literature. Next, we expand on the
specific background related to Yasunaga and Liang Yasunaga
& Liang (2021). In this regard, we aim to highlight results and
conclusions for comparison after the replication is completed.
Last, we provide an overview of scientific replication. The
overview will make clear why replication is vital to the field
and how software engineering is best replicated.

A. Automated Software Repair

In order to reduce the amount of time developers spend
manually identifying and patching bugs, a variety of tech-
niques have been devised to conduct automatic software
repair. Here we briefly review the three major approaches
in this field: search-based repair, semantics-based repair, and
learning-based repair.

1) Search-Based: Search-based approaches to automatic
software repair rely on syntactic analyses of the underlying
buggy program. Based on the syntax of the original code,
these methods first generate large pools of candidate patches
for a given bug via processes like source manipulation or
modification of abstract syntax trees Ding et al. (2019). Then
the search space is traversed to identify the best patch from
the pool of candidates, either randomly or using heuristic or
other optimization strategies, including genetic programming.
A patch is presumed to be successful if it passes a suite
of provided test cases. Many search-based algorithms for
software repair have been proposed Le Goues et al. (2012); Liu
et al. (2018); Mehne et al. (2018); Qi et al. (2014); a common
challenge faced by these programs is that as the search space
expands, it can become very difficult to navigate effectively
Le et al. (2018).

2) Semantics-Based: In contrast to search-based ap-
proaches, semantics-based approaches begin with a semantic,
rather than syntactic, analysis of the original code. These meth-
ods use information derived from evaluation against test suites
and symbolic execution to establish semantic constraints,
which are then used to guide the generation of possible repairs
Le et al. (2018). These repairs are constructed using pro-
gram synthesis techniques like template-based synthesis and
component-based synthesis. While semantics-based methods
offer greater precision when compared with their search-based
counterparts, they are inherently limited by the power of the
underlying semantic analyzers Ding et al. (2019). In addition,
like search-based algorithms, semantics-based algorithms con-
sider a patch to be correct if it passes every case in the test
suite. This means that both approaches are prone to produce
patches that are overfit to the test suite, which is usually
incomplete. Some popular semantics-based automatic software
repair programs include Angelix Mechtaev et al. (2016b) and
SemFix Nguyen et al. (2013).

3) Learning-Based: In recent years, a third approach to
automatic software repair has taken root, driven by the en-
trance of machine learning researchers to this field of study.
Deep learning practices have been used both to augment and
to replace components of more traditional search-based or
semantics-based algorithms, and these techniques have piqued
interests in both academia and industry, including inside major
companies like Facebook Marginean et al. (2019) and Google
Mesbah et al. (2019). Deep learning solutions are admired for
their generalizability; unlike older methods, they do not require
domain-specific knowledge about programming languages, er-
ror types, or common patches Namavar et al. (2021). Break-It-
Fix-It Yasunaga & Liang (2021), the work we aim to replicate
in this paper, is fundamentally a learning-based approach to
the automatic program repair problem, and displays some of
the flexibility just mentioned, as the original authors apply
their algorithm to correct bugs in both C and Python code.

B. Break-It-Fix-It

In their paper Break-It-Fix-It: Unsupervised Learning for
Program Repair Yasunaga & Liang (2021), Yasunaga and
Liang attempt to address one of the most pervasive problems
in the field of software repair - overfitting. Many of the
currently available automated repair algorithms were trained
on small datasets due to the costly nature of obtaining paired
<bad code, good code> data, which has traditionally
required manual labeling Mesbah et al. (2019). As a result,
these algorithms may fail to find patterns or generalize to
unseen examples Pu et al. (2016). Recognizing the limitations
imposed by a scarcity of true labeled data pairs, previous
authors have augmented their datasets with synthetically gen-
erated pairs, where broken code examples are produced by
applying random or heuristically-guided perturbations to exist-
ing examples of good (i.e. error-free) code Gupta et al. (2017).
However, the distribution of errors in synthetically-generated
bad code often does not align with the distribution of errors
seen in real examples of faulty code. Thus, repair algorithms
trained on these synthetic datasets fail to perform well when
deployed in the real world Yasunaga & Liang (2020).

Yasunaga and Liang address the shortcomings of earlier
synthetic datasets in Break-It-Fix-It (BIFI) by training a
breaker to, given good code, generate realistic examples of
bad code. The synthetic dataset produced by the breaker is
then used to train a software repair algorithm, or fixer. More
specifically, they formulate their task and approach as follows:

Input: An unlabeled dataset of code examples D and a critic
(e.g. a code analyzer or compiler) ¢ such that for z € D:

1, =z has errors
co(x) =
0, x has no errors.

The critic ¢ can be used to partition D into a set of correct
code snippets and set of erroneous code snippets; that is,

D= {Dgoodanad}~ !

Goal: Learn a fixer f that takes a code snippet = with
c(x) = 0 and outputs f(z) such that ¢(f(z)) = 1, while
minimizing the edit distance d(z, f(x)). 2

Approach:

0) [Initialize] Start with a fixer fy from prior work.
1) [Train] Repeat the following steps for k rounds. Let 4
indicate the round number, starting with ¢ = 1.

a) Apply fi—1 t0 & € Dpua. If ¢(fi—1(x)) = 1, save
the pair (x, fi—1(x)). Let D; be the dataset of (bad,
corrected) code snippets produced in this step.

b) Train a breaker b; on D;.

¢) Apply b; to & € Dyooa. If c(bi(x)) = 0, add the
pair (b;(x),z) to D;.

d) Train a fixer f; on D;

2) [Evaluate] Measure the accuracy of fi on a held out
set of real code snippets with errors.

The approach taken in BIFI is similar to the technique of
backtranslation, in which one uses a target-to-source model
to generate noisy sources, and then uses these noisy sources
to train a source-to-target model Lample et al. (2017). BIFI
improves on backtranslation in two primary ways: (i) BIFI
uses the critic to verify that additions to D; in steps la
and lc are actually(Zwrong, Zeorrect) Pairs, whereas this is not
guaranteed in backtranslation (ii) BIFI trains the fixer f;
on pairs of (real erroneous code, synthetic fixed good) in
addition to pairs of (synthetic erroneous code, real good code),
whereas backtranslation only trains the fixer on the latter set
of examples.

Yasunaga and Liang assert that BIFI achieves 71.7% accu-
racy on DeepFix Gupta et al. (2017), a 5.6% improvement
over the current state-of-the-art algorithm, as well as 90.5%
accuracy on Github-Python, a dataset of three million python
code snippets introduced in the original BIFI paper. Our study
aims to replicate their methods and results.

C. Scientific Replication

Generally, in the scientific community, there is a low regard
for scientific replications Lindsay & Ehrenberg (1993). As
researchers often seek out new discoveries, they are inclined to
wonder where the innovation lies in replicating a study exactly
how it was originally conducted. However, if this were the
case, if replications were truly identical to the original study,
all conditions (e.g., time, testing environment) would need to
be the same. Thus, all replications must involve some level of
variation in the conditions. Once we accept that replication
isn’t merely repeating the exact same study, we can take
advantage of the differences in the study conditions and note

Note: the code snippets in Dgooa and Dypyq have no relation to each other.
We do NOT have pairs of snippets (Zpad, UCgood) where zp,q is a piece of code
with errors and Tga0q is a corrected, error-free version of Tpag.

%In software repair, we want the fixer f to be semantics-preserving, but
since this is very difficult to check, Yasunaga and Liang use edit distance as
a proxy measure, under the assumption that if the edit distance between two
code snippets is small, they are semantically similar.

that despite these differences, the same results were obtained
Lindsay & Ehrenberg (1993). Replication not only validates
the original findings but establishes an increased range of
conditions for which the findings hold, thereby extending the
scope of the work Lindsay & Ehrenberg (1993); Brooks et al.
(1996).

According to Gomez, Juristo, and Vegas there are five
notable elements in software engineering experimentation that
form the structure of an experiment and may vary in replica-
tion: Site, Experimenters, Apparatus, Operationalizations, and
Population Properties. Site and Experimenters account for the
experiment location and who is conducting the experiment,
respectively Gomez et al. (2010). Apparatus is defined by the
“experimental design, instruments, forms, materials, experi-
mental objects and procedures used to run an experiment”
Gomez et al. (2010). Operationalizations describe the inde-
pendent and dependent variables that are used to measure
the effects of the experimentGomez et al. (2010). Population
Properties refers to the subjects and experimental objects,
where subject properties are subject type and experience and
experimental objects are “specifications, design documents,
source codes, programs or any other artefact related to the
software development” Gémez et al. (2010). We use these el-
ements as a framework to ensure our BIFI replication research
aligns with the scientific method.

III. METHOD

While we are interested in validating the results of the
original study, the goal of our work is to establish an increased
range of different conditions in which the findings of BIFI will
hold. Simply put, we wish to know if it is possible to replicate
the results of BIFI using the same data in a different testing
environment. In seeking to replicate these results, we will
also be evaluating whether the researcher’s repository contains
explicit enough instructions and links to source code that aid
the clear replication of their study. Successful replication of
BIFI will help us to determine if the results can be generalized
and may create new avenues for potential work and innovation.

Literature suggests Lindsay & Ehrenberg (1993) that it
is best to start with closer replications in the initial stages
of replication because the more differentiated ones may not
replicate successfully. Therefore, we first opted to complete
a close replication in which we kept relatively all the known
conditions of the study the same. However, due to issues with
the dependencies we were unable to follow the documented
protocol from the original experimenters Yasunaga & Liang
(2021). Consequently, the replication design pivoted from one
where little variance existed to one that has variance but
follows the overall method of the reference experiment Gémez
et al. (2010).

Overall, we sought to conduct a replication of the BIFI
study to assess the generalizability of the research and the
potential for further use of the self-repair function. While we
came across some dependency issues at first, we were able to
produce results that corresponded to the ones reported in the
BIFI paper by using their trained models. However, based on
the author’s provided documentation, we were unable to train

our own models and therefore the scope to which BIFI can
be expanded may be limited. Details are provided in the next
section.

IV. RESULTS

We present the results in two sections. The first covers the
replication of the BIFI Yasunaga & Liang (2021) initial fixer
training. Then, in the second section, we reveal the results
of evaluating the fixer with the models we trained as well
as the trained models Yasunaga and Liang provided as part
of the materials. Along the way, we outline critical findings
and important details that contribute to answer the research
question.

A. Training the BIFI fixer

We followed the steps as outlined in the BIFI GitHub
repository. However, we encountered numerous errors. Some
errors were correctable and we advanced to the next step.
Ultimately, however, some errors were terminal. The details
are as follows.

We cloned the BIFI repository Yasunaga & Liang (2021).
Next, we followed the BIFI environment creation commands
indicated in the repository up to pip install -e. In-
stalling in editable mode produced errors because of a
missing file. We corrected the error by back-tracing to the
most likely version of the fairseq package in Facebook’s
GitHub and manually insert the missing files (Table I) in the
fairseqg\data directory. To back-trace, we triangulated the
fairseq release based on the time of BIFI publication, the
BIFI repository last commit timestamp, and the fairseq
version release dates. We were able to build fairseqg
successfully after inserting these files from the Facebook
repository into the local BIFI environment.

TABLE I
FAIRSEQ FILE REPLACEMENTS AND THE VERSIONS
Versions
File BIFI Replaced
data_utils_fast.pyx 0.10.2 0.10.2
token_block_utils_fast..pyx 0.10.2 0.10.2
dictionary.py 0.10.2 0.10.2

Following the install of numpy and editstance, we
downloaded the minimal dataset from the BIFI repository.
We then created the set of round directories per the layout
diagram Yasunaga and Liang provided. However, executing the
python statements from run-round0.sh produced errors.
In this phase of the replication, we encountered import errors
for various fairseq subordinate packages. We traced the
errors to additional missing files in the same directory as
before. At this point, we opted to simply copy the Facebook
\data subdirectory for version 0.10.2 into the BIFI local
environment. While this resolved missing file issues, we then
encountered a series of package import obstacles. Fixing these,
while conceptually possible, would require editing BIFI source
code which we elected to not do given the intended goal and
methodology of this replication.

For completeness, we also tried to implement the BIFI
training procedure in an updated local environment. The
environment reflected a current software stack (i.e., python
3.10.6, fairseq 0.12.2, numpy 1.24.1). This was not successful
due to significant differences between package versions and
the BIFI source code architecture. Therefore, getting the BIFI
system to a working state based on replicating training the
models was not possible with the materials available in the
BIFI GitHub repository.

However, one of the authors (Yasunaga) responded to an
email inquiry regarding the above. The response included a
Docker compose file and a fairseq package build from
March 2020. Upon inspection, we observed six differences
between the Docker compose directives, the BIFI repository
instructions and contents, as well as the details in the original
paper. We indexed all the components and range of versions
(Table II) before attempting further replication of model train-
ing.

TABLE I
BREAKDOWN OF BIFI ENVIRONMENTAL
COMPONENTS
Versions
Component Docker GitHub & Paper
Operating System Ubuntu 16.04 NAT
CUDA 10.1 NA!
cuDNN 7 NA!
miniconda latest NAL
Python 3.7.7 3.7.7
pytorch 1.4.0 1.4.0
torchvision 0.5.0 0.5.0
tqdm 4.53.0 latest
numpy 1.20.1 1.20.1
editdistance latest latest
fairseq? 0.9.x NA!

" NA: information is not available in the BIFI GitHub
repository materials.
Version information had to be inferred from file date
stamps and other file object clues contrasted against
package release history.

We then decided to pursue two model training paths given
the updated BIFI component information. First, we used the
Docker compose file to deploy a container environment as
recommended by Yasunaga. Second, we took the fairseq
package from Yasunaga and overwrote the same directory in
the local GitHub repository clone. In both cases, we injected
the training data as detailed by the authors. Training completed
without error for both the Docker container and the local clone
environments. Further, both training paths yielded models
identical in file size and object metadata to the trained models
provided in the BIFI repository.

B. Evaluating the BIFI fixer

We were able to run the BIFI fixer evaluation without error
using all three trained models. We used the full data download
from the BIFI repository. Then, we ran Yasunaga and Liang’s
final BIFI evaluation step against the models trained in our
Docker and local repository clone environment. More specifi-
cally, we ran the python src/c005__eval_fixer.py
routine using the ——round_name round2-BIFI-part2

option. Our intent was to replicate Yasunaga and Liang’s
round-2 accuracy in Total (90.5%), for Unbalanced Parenthe-
ses (94.2%), Indentation Error (85.9%), and Invalid Syntax
(93.5%). The results from our replication trials are as follows
(Table III).

TABLE III
REPLICATION RESULTS
Accuracy
Category Docker Local Yasunaga & Liang (2021)
Total 90.5% 90.5% 90.5%
Unbalanced Parentheses ~ 94.2% 94.2% 94.2%
Indentation Error 85.9% 85.9% 85.9%
Invalid Syntax 93.5% 93.5% 93.5%

Considering the outcomes of this replication, we reached
several conclusions. These are discussed in the next and final
section of this work. We also detail where our assumptions and
limitations differ from those offered by Yasunaga and Liang.
As well, as a replication of existing work, we have unique
recommendations and ideas for future research in software
self-repair. In any case, we begin by offering a brief summary
as a grounding mechanism for conceptualizing our results
specifically and software self-repair in general.

V. CONCLUSION

Today, software developers spend upwards of 50% of their
time finding and patching bugs and vulnerabilities Britton
et al. (2013); Alhefdhi et al. (2020). Automated software
repair Harman (2010); Le Goues et al. (2013) is intended to
reduce or eliminate such a labor burden, thus freeing trapped
development capacity. One current attempt at self-repair was
Yasunaga and Liang’s Break-It-Fix-It (BIFI) Yasunaga &
Liang (2021). The authors demonstrated a self-repair function
capable of repairing errors with greater than 90% accuracy.
However, Yasunaga and Liang specifically recommend future
work explore to what extent BIFI generalizes to other domains.
Echoing such a sentiment, Xia et al. Xia et al. (2022) noted
existing literature, and the demonstrated self-repair paradigms
therein, may have limited generalizability.

For that reason, the purpose of this work was to conduct
a rigorous, scientific replication of BIFI. We were largely
successful in this effort, with one major caveat. On one hand,
our replication succeeded in validating the BIFI evaluation
results using just the code, documentation, and pre-trained
models available in the BIFI repository published by the
authors. We take such an outcome as one step completed
towards assessing the generalizability of software self-repair
in general and BIFI in specific. On the other hand, we were
initially unable to replicate the model training protocol for
BIFI duc to missing files and package import crrors in the
public version of the code. These issues were only resolved
once we contacted the BIFI authors and received a copy of the
Docker compose file used to generate the environment used
in their experiments. Using this compose file, we were able to
construct a viable model training environment and build the
models using directions in the BIFI repository 3.

3We did not receive permission to share the Docker compose file.

Though we eventually succeeded in training the BIFI model,
and achieved the same performance the authors claim, the
successful implementation of BIFI used significantly outdated
versions of Python, numpy and fairseq. Furthermore, attempts
to reimplement BIFI with updated versions of these packages
proved fruitless. Based on this result, we surmise BIFI is not
actively maintained in the software engineering sense. The last
repository commit was on August 31, 2021. The technology
stack (i.e., Python, fairseq, and so forth) have evolved since
that commit and without the Docker compose file it is not
possible to use BIFI independent of its pre-trained models.

A. Assumptions and Limitations

Of course, we have assumed the GitHub repository provided
by Yasunaga and Liang Yasunaga & Liang (2021) contains
the correct codebase and training data. The assumption is
reasonable because the commit history is aligned with the
publication date. Further, a thorough search did not uncover
any additional code repositories. We also assume the errors
encountered during the BIFI training procedure are unresolv-
able given publicly available documentation on BIFI. While it
might be possible to engineer a Python environment suitable
for BIFI training, the source paper lacks complete information
particularly as it relates to the fairseq package, and the Docker
compose file we used to resolve issues with fairseq is not
published at this time. Therefore, potential resolutions for
the errors are limited. On a related point, we recognize
the limitation of our results in establishing generalizability
for BIFI. Achieving identical results, while positive, do not
fully establish external, general application of the automatic
software self-repair tool.

B. Recommendations

Given the challenges that emerged during the replication
effort, it is important that researchers consider the pace at
which technology evolves. Research that provides clear, exe-
cutable documentation and timeless code will help to ensure
that future technology can build on existing work. Therefore,
our BIFI replication work should be extended to explore the
technology debt (tech debt) that exists in current research.
Briefly, tech debt speaks to the measurable value associated
with short term technology design or implementation decisions
in exchange for increased maintenance costs long term. At
an extreme, tech debt is highest when no maintenance takes
place or technology is developed and abandoned. Thus, if the
aim of self-repair functions is to alleviate the time spent by
developers on identifying and patching bugs, we must first
look at the sustainability of the research in this area.

A first step to doing this would be to find the percentage
of relevant papers (with code) that are in a tech debt state.
From here, future work should explore which of this work
has been updated and if the patches stay true to the original
functionality of the code. Similar to the Docker file shared by
Yansunaga, practitioners and researchers alike should consider
using a container environment to better preserve their work
and increase the likelihood of successful replication. Utilizing
a container environment enables developers to share code and

its dependencies with others, thereby reducing the potential
for errors and hopefully slowing down the pace at which
the research enters a state of technical debt. On this note, it
may be worthwhile to examine how many self-repair function
papers utilize micro-server architectures. Once we have an
understanding for the ubiquity of tech debt in recent self-repair
work, it can be extended into future research such as self-repair
functions that automatically review code and are built into the
memory environment of the workspace. Such innovation will
only evolve if we write code with tomorrow in mind so that
our systems of today can be used in the future. Finally, it may
be of value to the field if future work is able to reproduce the
BIFI accuracy measures using an updated technology stack.
Doing so will invariably require changes to the BIFI source
code but will add to the body of evidence for generalizability
of the self-repair function.

REFERENCES

Abuasad, A., & Alsmadi, I. M. (2012). Evaluating the
correlation between software defect and design coupling
metrics. In 2012 international conference on computer,
information and telecommunication systems (cits) (pp. 1-
5).

Alhefdhi, A., Dam, H. K., Le, X.-B. D., & Ghose, A. (2020).
Adversarial patch generation for automatic program repair.
arXiv preprint arXiv:2012.11060.

Alves, H., Fonseca, B., & Antunes, N. (2016). Software
metrics and security vulnerabilities: dataset and exploratory
study. In 2016 12th european dependable computing con-
ference (edcc) (pp. 37-44).

Britton, T., Jeng, L., Carver, G., & Cheak, P. (2013). Re-
versible debugging software “quantify the time and cost
saved using reversible debuggers”. University Cambridge:
Cambridge, UK.

Brooks, A., Daly, J., Miller, J., Roper, M., & Wood, M.
(1996). Replication of experimental results in software
engineering. International Software Engineering Research
Network (ISERN) Technical Report ISERN-96-10, Univer-
sity of Strathclyde, 2.

Ding, Z. Y., Lyu, Y., Timperley, C., & Le Goues, C. (2019).
Leveraging program invariants to promote population di-
versity in search-based automatic program repair. In 2019
ieee/acm international workshop on genetic improvement
(gi) (p. 2-9). doi: 10.1109/GI1.2019.00011

Goémez, O. S., Juristo, N., & Vegas, S. (2010). Replications
types in experimental disciplines. In Proceedings of the
2010 acm-ieee international symposium on empirical soft-
ware engineering and measurement (pp. 1-10).

Gupta, R., Pal, S., Kanade, A., & Shevade, S. (2017,
Feb.). Deepfix: Fixing common c¢ language errors
by deep learning. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 31(1). Retrieved
from https://ojs.aaai.org/index.php/AAATI/
article/view/10742 doi: 10.1609/aaai.v31i1.10742

Harman, M. (2010). Automated patching techniques: the fix
is in: technical perspective. Communications of the ACM,
53(5), 108-108.

Lample, G., Conneau, A., Denoyer, L., & Ranzato, M. (2017).
Unsupervised machine translation using monolingual cor-
pora only. arXiv. Retrieved from https://arxiv.org/
abs/1711.00043 doi: 10.48550/ARXIV.1711.00043

Le, X.-B. D., Thung, F,, Lo, D., & Goues, C. L. (2018). Over-
fitting in semantics-based automated program repair. In Pro-
ceedings of the 40th international conference on software
engineering (p. 163). New York, NY, USA: Association
for Computing Machinery. Retrieved from https://doi
.0org/10.1145/3180155.3182536 doi: 10.1145/
3180155.3182536

Le Goues, C., Forrest, S., & Weimer, W. (2013). Current
challenges in automatic software repair. Software quality
Jjournal, 21(3), 421-443.

Le Goues, C., Nguyen, T., Forrest, S., & Weimer, W. (2012).
Genprog: A generic method for automatic software repair.
IEEE Transactions on Software Engineering, 38(1), 54-72.
doi: 10.1109/TSE.2011.104

Lindsay, R. M., & Ehrenberg, A. S. (1993). The design of
replicated studies. The American Statistician, 47(3), 217-
228.

Liu, K., Koyuncu, A., Kim, K., Kim, D., & F. Bissyandé,
T. (2018). Lsrepair: Live search of fix ingredients for
automated program repair. In 2018 25th asia-pacific soft-
ware engineering conference (apsec) (p. 658-662). doi:
10.1109/APSEC.2018.00085

Marginean, A., Bader, J., Chandra, S., Harman, M., Jia, Y.,
Mao, K., ... Scott, A. (2019). Sapfix: Automated end-
to-end repair at scale. In 2019 ieee/acm 41st international
conference on software engineering: Software engineering
in practice (icse-seip) (p. 269-278). doi: 10.1109/ICSE
-SEIP.2019.00039

McGuire, M. (2022, Dec). What is the cost of poor software
quality in the u.s.? https://www.synopsys.com/
blogs/software-security/poor—-software
—quality-costs-us/. (Accessed: 11-01-2023)

Mechtaev, S., Yi, J., & Roychoudhury, A. (2016a). Angelix:
Scalable multiline program patch synthesis via symbolic
analysis. In Proceedings of the 38th international confer-
ence on software engineering (pp. 691-701).

Mechtaev, S., Yi, J., & Roychoudhury, A. (2016b). Angelix:
Scalable multiline program patch synthesis via symbolic
analysis. In 2016 ieee/acm 38th international conference
on software engineering (icse) (p. 691-701). doi: 10.1145/
2884781.2884807

Mehne, B., Yoshida, H., Prasad, M. R., Sen, K., Gopinath,
D., & Khurshid, S. (2018). Accelerating search-based
program repair. 2018 IEEE 11th International Conference
on Software Testing, Verification and Validation (ICST),
227-238.

Mesbah, A., Rice, A., Johnston, E., Glorioso, N., & Aftandil-
ian, E. (2019). Deepdelta: Learning to repair compilation
errors. In Proceedings of the 2019 27th acm joint meeting on
european software engineering conference and symposium
on the foundations of software engineering (p. 925-936).
New York, NY, USA: Association for Computing Ma-
chinery. Retrieved from https://doi.org/10.1145/
3338906.3340455 doi: 10.1145/3338906.3340455

Misra, S. C., & Bhavsar, V. C. (2003). Relationships between
selected software measures and latent bug-density: Guide-
lines for improving quality. In International conference on
computational science and its applications (pp. 724-732).

Namavar, M., Nashid, N., & Mesbah, A. (2021). A controlled
experiment of different code representations for learning-
based bug repair. arXiv. Retrieved from https://arxiv
.org/abs/2110.14081 doi: 10.48550/ARXIV.2110
.14081

Nguyen, H. D. T., Qi, D., Roychoudhury, A., & Chandra, S.
(2013). Semfix: Program repair via semantic analysis. In
2013 35th international conference on software engineering
(icse) (p. 772-781). doi: 10.1109/ICSE.2013.6606623

Plesser, H. E. (2018). Reproducibility vs. replicability:
a brief history of a confused terminology. Frontiers in
neuroinformatics, 11, 76.

Pu, Y., Narasimhan, K., Solar-Lezama, A., & Barzilay, R.
(2016). sk_p: a neural program corrector for moocs.
arXiv. Retrieved from https://arxiv.org/abs/
1607.02902 doi: 10.48550/ARXIV.1607.02902

Qi, Y., Mao, X., Lei, Y., Dai, Z., & Wang, C. (2014).
The strength of random search on automated program
repair. In Proceedings of the 36th international confer-
ence on software engineering (p. 254-265). New York,
NY, USA: Association for Computing Machinery. Re-
trieved from https://doi.org/10.1145/2568225
.2568254 doi: 10.1145/2568225.2568254

Tufano, M., Pantiuchina, J., Watson, C., Bavota, G., & Poshy-
vanyk, D. (2019). On learning meaningful code changes
via neural machine translation. In 2019 ieee/acm 41st
international conference on software engineering (icse) (pp.
25-36).

Xia, C. S., Wei, Y., & Zhang, L. (2022). Practical program
repair in the era of large pre-trained language models. arXiv
preprint arXiv:2210.14179.

Yasunaga, M., & Liang, P. (2020). Graph-based,
self-supervised program repair from diagnostic feedback.
arXiv. Retrieved from https://arxiv.org/abs/
2005.10636 doi: 10.48550/ARXIV.2005.10636

Yasunaga, M., & Liang, P. (2021). Break-it-fix-it: Un-
supervised learning for program repair. In International
conference on machine learning (pp. 11941-11952).

Microcontroller based Smart Coil Winder System

Dr.A.Rajamani® Ms.N.Saranya?

'HoD, EEE Department, PSG polytechnic College

2 Student, EEE Department, PSG College of Technology

Abstract - The aim of this paper is to develop the control
circuit for smart automatic coil winder, which functions
with respect to the PIC Microcontroller program. The
conventional coil winding machine winds copper wire on a
former and the former is attached to the iron rod, which is
to be actuated manually. Moreover, the manual coil
winding machine does not have any control circuit for the
smart functionality. But in this design, the controller has
more memory to operate and save the data and also to
improve the winder program. Additionally, it also reduces
the time of operation and the requirement of Manpower.
This coil winder control circuit uses PIC Microcontroller
(16F887), which runs the winder system according to main
program and also the motor step sequencing program.

Key words: PIC Microcontroller, Stepper Motor, Stepper
motor driver module, 16*2 LCD.

1.INTRODUCTION

In Electrical and Electronics Engineering, coil
winding process is mandatory and it is used to wind
electromagnetic coils and transformer coils. Coils are
used as essential components in various circuits and
also to provide the magnetic field for motors,
transformers, generators, and in the manufacture
of loudspeakers and microphones. The shape and
dimensions of a winding are designed to fulfil the
particular purpose. Parameters such as inductance, Q
factor, insulation strength, and strength of the desired
magnetic field greatly influence the design of coil
windings. Coil winding can be structured into several
groups regarding the type and geometry of the wound
coil. Mass production of electromagnetic coils relies
on automated machinery.Efficient coils minimize the
materials and volume required for a given purpose.
The ratio of the area of electrical conductors, to the
provided winding space is called "fill factor". Since
round wires will always have some gap, and wires
also have some space required for insulation between
turns and between layers, the fill factor is always
smaller than one. To achieve higher fill factors,
rectangular or flat wire can be used.

2.PROPOSED SYSTEM

In the speed running world everyone is
considering the time factor as an important issue. To
reduce this time or managing this time, reducing
labour cost and reducing the labours, a small
implementation this is mainly used in transformer
producing industries and training institutions. We
have proposed simple, low cost, low power
consumption components. The system is PIC
Microcontroller based automatic carriage movement
of the coil winder. The carriage is placed on the coil
winder it is moved by the help of a stepper motor is
interfaced with the PIC Microcontroller. In the
proposed project the carriage is moved by an
automated way instead of using manual way. Its
vision is used to reduce human effort and at the same
time increase the productivity & accuracy levels that
cannot be achieved with manual operations. The
automatic coil winder in this article uses stepper
motors to position the wire. The machine winds the
coil within the size of the bobbin. The machine is
controlled by the PIC16F877A microcontroller.

DC 12V POWER

DC 5V POWER SUPPLY
SUPPLY STEPPER
MOTOR FOR

l & CARRIAGE
MOVEMENT

MOTOR DRIVER

MODULE
STEPPER MOTOR
PIC FOR WINDER

KEYPAD | WMICROCONTROLLER

[— SPEAKER

LCD DISPLAY

Fig.1 Block diagram of Coil winder

https://en.wikipedia.org/wiki/Electrical_engineering
https://en.wikipedia.org/wiki/Electromagnetic_coil
https://en.wikipedia.org/wiki/Loudspeaker
https://en.wikipedia.org/wiki/Microphone
https://en.wikipedia.org/wiki/Inductance
https://en.wikipedia.org/wiki/Q_factor
https://en.wikipedia.org/wiki/Q_factor

RESTIGIRVE RELTIOSOTIC

RCITIOS.CCR

IANULPHUCIZNG RCZPIARCE!
RAUANICIZNT- RCISC

RAJANIVREF(CIIN: Ress00
RANTICKIGIOUT ROETKCK
RASANAESICZOUT RETRKDT
RABOSCECLKOUT
RATIOSCICLKN

T
T

Ll Ebkeke -]

REUANIDCIZHE ROz
REZANS

FEEEPEE P |-

REVICSFOAT REDANS

e

Fig.2 Circuit diagram of Interfacing LCD

U1

L oscrcun o (=5
— OSC2ICLKOUT RB1 .—35
28 e E
< o REIPOH [2
] w2
e T
2] ramsnREr: rapo [)
< wwmoacionr faneeo (<L .
=} Rasmnssiczour e . oou |-
o _ rearrosormion (12 e o
) reumis® rowTrosicee (2 Me xfH
] reumenm RGECCP (2L T
202} pamics reascasee (o Tl ey
ol e e sofZ
L TR rosso0 (2 e el
ROBIACK (22 L oA
RoTRADT (22 —
roveseo |2
Fo1psPl |2
RD2IPSP2 E
o3psPs |2
RD4PSP4 l_ZE
rospss 2
e
Ro7RSeT (2

PIC 16F887

Fig.3 Circuit diagram of Interfacing Stepper motor
3.HARDWARE DESCRIPTION

This project consists of the following
components.

a) PIC Microcontroller (PIC16F887)

b) Stepper Motor (28BYJ-48)

c) Stepper Motor Driver Module (ULN2003)
d) 16*2 LCD display

e) PIC Microcontroller programming kit

a)PIC Microcontroller (P1IC16F887)
PIC microcontrollers are a family of

specialized microcontroller chips produced by
Microchip Technology in Chandler, Arizona. The

acronym PIC stands for “peripheral interface
controller,” although that term is rarely used
nowadays. A microcontroller is a
compact microcomputer designed to govern the
operation of embedded systems in motor
vehicles, robots, office machines, medical devices,
mobile radios, vending machines, home appliances,
and various other devices. A typical microcontroller
includes a processor, memory, and peripherals.

The PIC microcontrollers appeal to
hobbyists and experimenters, especially in the fields
of electronics and robotics. Key features include wide
availability, low cost, ease of reprogramming with
built-in EEPROM (electrically erasable
programmable read-only memory), an extensive
collection of free application notes, abundant
development tools, and a great deal of information
available on the Internet. The PIC microcontrollers
often appear under the brand name PIC
Microcontroller.

| PC<12:0> |
@ 13
Stack Lewvel 1
Stack Lewvel 2
-
-
-
Stack Lewel 8
Resat Vecior OO000h
- a
- i
Imtermupt WVector D00
. 0005h
Fage O
OFFFh
B DBE00n
a
On-Chip = OFFFh
Program + 1000h
hermony Page 2
17FFh
18006
Fage 3
1FFFh

Fig.4 Program memory map and stack for the PIC16F887
b)Stepper Motor (28BY J-48)

Stepper motor, also known as step
motor or stepping motor, is a brushless DC electric
motor that divides a full rotation into a number of
equal steps. The motor’s position can then be
commanded to move and hold at one of these steps
without any position sensor for feedback (an open-
loop controller), as long as the motor is carefully
sized to the application in respect to torque and
speed. Switched reluctance motors are very large

https://internetofthingsagenda.techtarget.com/definition/microcontroller
https://internetofthingsagenda.techtarget.com/definition/microcomputer
https://internetofthingsagenda.techtarget.com/definition/embedded-system
https://searchenterpriseai.techtarget.com/definition/robot
https://whatis.techtarget.com/definition/processor
https://searchstorage.techtarget.com/definition/memory-card
https://searchmobilecomputing.techtarget.com/definition/peripheral
https://whatis.techtarget.com/definition/EEPROM-electrically-erasable-programmable-read-only-memory
https://en.wikipedia.org/wiki/Brushless_DC_electric_motor
https://en.wikipedia.org/wiki/Brushless_DC_electric_motor
https://en.wikipedia.org/wiki/Rotary_encoder
https://en.wikipedia.org/wiki/Feedback
https://en.wikipedia.org/wiki/Open-loop_controller
https://en.wikipedia.org/wiki/Open-loop_controller
https://en.wikipedia.org/wiki/Torque
https://en.wikipedia.org/wiki/Switched_reluctance_motor

stepping motors with a reduced pole count, and
generally are closed-loop commutated.

The most commonly used stepper motor is
the 28-BYJ48 Stepper Motors. It can be mostly
used in DVD drives, Motion camera and many more
places. The motor has a 4coil unipolar arrangement
and each coil is rated for +5V hence it is relatively
easy to control with any basic microcontrollers.
These motors have a stride angle of 5.625°/64, this
means that the motor will have to make 64 steps to
complete one rotation and for every step it will cover
a 5.625° hence the level of control is also high.
However, these motors run only on 5V and hence
cannot provide high torque, for high torque
application you should consider the Nemal7 motors.

4. Orange 0—5

Coil 1
5. Redo—
+5V

1. Blue
Coil 4

4. Coil 1 (Orange)

.+5V (Red)
1. Coil 4 (Blue)

Fig.5 Pin out of 28BYJ-48 Stepper motor
¢)Stepper Motor Driver Module (ULN2003)

Stepper motor drivers are specifically
designed to drive stepper motors, which are capable
of continuous rotation with precise position control,
even without a feedback system. Our stepper motor
drivers offer adjustable current control and multiple
step resolutions, and they feature built-in translators
that allow a stepper motor to be controlled with
simple step and direction inputs. These modules are
generally basic carrier boards for a variety of stepper
motor driver Ics that offer low-level interfaces like
inputs for directly initiating each step. An external
microcontroller is typically required for generating
these low-level signals.

The ULNZ2003 is high voltage, high current
3Darlington arrays each containing seven open
collectors3Darlington pairs with common emitters.
Each channel rated at 500mA and can withstand peak
currents of 600mA. Suppression diodes are included
for inductive load driving and the inputs are pinned
opposite the outputs to simplify board layout. Fig. 5.1
shows the ULN2003 stepper motor driver board.

These versatile devices are useful for driving a wide
range of loads including solenoids, relays DC motors,
LED displays filament lamps, thermal printheads and
high-power buffers.

—p—0 o
270 — oot
luo—r—DE _(!
el
oty I

Series ULN-2003A

Fig.6 Schematic diagram of ULN2003 driver module

IN1 1
IN 2 2
IN 3 3
N & &
ltl? 5
INE &
N7 7
GND 8

S-1977T01

Fig.7 Pin diagram of ULN2003
d)16*2 LCD Display

A liquid crystal display or LCD draws its
definition from its name itself. It is combination of
two states of matter, the solid and the liquid. LCD
uses a liquid crystal to produce a visible image.
Liquid crystal displays are super-thin technology
display screen that are generally used in laptop
computer screen, TVs, cell phones and portable video
games. LCD’s technologies allow displays to be
much thinner when compared to cathode ray tube
(CRT) technology. Liquid crystal display is
composed of several layers which include two
polarized panel filters and electrodes. Light is

https://en.wikipedia.org/wiki/Commutator_(electric)
https://www.pololu.com/category/87/stepper-motors
http://www.edgefxkits.com/wireless-electronic-notice-board-by-gsm-with-user-programable-number-features

projected from a lens on a layer of liquid crystal. This
combination of coloured light with the grayscale
image of the crystal (formed as electric current flows
through the crystal) forms the coloured image. The
LCD is either made up of an active matrix display
grid or a passive display grid. Most of the
Smartphone’s with LCD display technology uses
active matrix display, but some of the older displays
still make use of the passive display grid designs.
Most of the electronic devices mainly depend on
liquid crystal display technology for their display.

EN

Sfu22 a3 adanio
§>> =z"00cocooo0o0gs

Fig.8 Pin out of LCD

The liquid crystals are the organic compound which
is in liquid form and shows the property of optical
crystals. The layer of liquid crystals is deposited on
the inner surface of glass electrodes for the scattering
of light. The liquid crystal cell is of two types; they
are Transmittive Type and the Reflective Type.

TABLE 1 PIN DETAILS OF LCD

PIN NO | Symbol Fuction
1 vss | GND
2 VDD | +5V
3 o) Contrast adjustment
4 RS H/L Register select signal
5 gy | HIL ReadMirite signal
6 E H/L Enable signal
7 peo | H/L Data bus line
8 pe1 | HL Data bus line
9 DB2 H/L Data bus line
10 pe3 | H/L Data bus line
11 pes | H/L Data busline
12 DE5 H/L Data bus line
13 DB6 H/L Data bus line
14 DB7 HIL Data bus line
15 A +4.2V for LED
16 K Power supply for BKL{OW)

AJSE | June, 2023 | © SMART SOCIETY

American Journal of Science and Engineering | Volume-4, Issue-1 | (Wwww.ajse.us)

e)PIC Microcontroller programming kit

PIC kitis a family of programmers for PIC
microcontrollers made by Microchip Technology.
They are used to program
and debug microcontrollers, as well as program
EEPROM. Some models also feature logic analyser
and serial communications (UART) tool. The people
who develop open-source software for the PIC kit use
a mailing list for collaboration.

The PIC kit 2introduced in May
2005replaced the PIC kit 1. Fig. 3.2 shows the PIC
kit- 2 programmer Kit. The most notable difference
between the two is that the PIC kit 2 has a separate
programmer/debugger unit which plugs into the
board carrying the chip to be programmed, whereas
the PIC kit 1 was a single unit. This makes it possible
to use the programmer with a custom circuit board
via an in-circuit serial programming (ICSP) header.
This feature is not intended® for so-called
"production” programming, however.

The PIC kit 2 uses an internal PIC18F2550
with Full Speed USB. The latest PIC kit 2 firmware
allows the user to program and debug most of the 8-
and 16-bit PIC micro and ds PIC members of the
Microchip product line. The PIC kit 2 is open to the
public, including its hardware schematic, firmware
source code (in C language) and application
programs (in C# language). End users and third
parties can easily modify both the hardware and
software for enhanced features. e.g. Linux version of
PIC kit 2 application software, DOS style CMD
support, etc.

Fig.9 PIC kit

Page 11

https://en.wikipedia.org/wiki/Programmer_(hardware)
https://en.wikipedia.org/wiki/PIC_microcontroller
https://en.wikipedia.org/wiki/PIC_microcontroller
https://en.wikipedia.org/wiki/Microchip_Technology
https://en.wikipedia.org/wiki/Debug
https://en.wikipedia.org/wiki/UART
https://en.wikipedia.org/wiki/In-circuit_serial_programming
https://en.wikipedia.org/wiki/PICkit#cite_note-pickit2manual-3
https://en.wikipedia.org/wiki/Linux

4. ADVANTAGES

Reduction of material cost.

Reduction of overall cost.

Increased production.

Increased storage capacity.

Increased safety.

Reduce in fatigue.

Improved personnel comfort

Efficiency is improved.

Fully automatic winding machine saves
energy.

VVVVVYYVVY

5.APPLICATIONS

» It is wvery useful in Transformer
manufacturing, to wind the transformer
quickly.

» To wind the stator or rotor in motor or
submersible pump.

» To wind the condensers coil and fan coils
quickly.

» It is very useful in small scale industries
where ever winding coils are used.

» It used to train students for wind the small
transformers & relay coils.

6.CONCLUSION

The main objective of this machine is to replace
the manual labour and optimize the process. The
inference is that, this automated system has increased
the production and also provided solution for lack of
human labour for such hectic jobs is compensated. In
general, it needs one worker for one machine but by
implementing this automation it needs one worker for
four machines. All electrical components such as
stepper motor, motor driver module and the
microcontroller were assembled and the machine was
tested. The manual carriage movement of coil winder
is automated for high reliability. The project can be
extended by using another one stepper motor for the
winder and a buzzer is provided for intimating the
worker that the process is over.

REFERENCES

1. Benbouzid MEH. A review of stepper
motor signature analysis as a medium for
faults detection. IEEE Trans Ind Electron
2000; 47: 984-93.

Krishnamurthy TN. Fabrication of Low-Cost
Filament Winding Machine. International
Journal of Recent Trends in Electrical and
Electronics Engineering 2014; 4: 30-9.

Hong H, Chao-Ming C. Design Fabrication
and Failure Analysis of Stretchable
Electrical Routings. Sensors 2014; 14:
11855-77.

Mulik P, Kamble RK. Development of
Automatic Transformer Winding Machine.
International Journal of Innovations in
Engineering Research and Technology
2015; 2: 1-8.

Joshi NS, Bulbule CB, Domale SD.
Automatic Transformer Winding Machine
International Journal for Research in
Applied Science and Engineering
Technology 2015: 3: 942-7.

Ikhankar P, Golhar R. Automation in
Manufacturing of Winding. International
Journal for Scientific Research and
Development 2016; 4:453 — 6.

Good, JK; Roisum, David R. (1 January
2008). Winding: Machines, Mechanics &
Measurements (1ST ed.). Lancaster, PA:
DEStech Publications. p. 478. ISBN 978-1-
932078-69-5. Retrieved 9 January 2015.
Querfurth, William (1954). Coil Winding: A
Description of Coil Winding Procedures,
Winding Machines and Associated
Equipment. University of Michigan: G.
Stevens Mfg. Company.

Tarun, Agarwal. "Stepper Motor — Types,
Advantages & Applications".

http://www.destechpub.com/links/catalogs/bookstore/machinerymanufacturing-engineering-4/winding/
http://www.destechpub.com/links/catalogs/bookstore/machinerymanufacturing-engineering-4/winding/
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-932078-69-5
https://en.wikipedia.org/wiki/Special:BookSources/978-1-932078-69-5
https://www.elprocus.com/stepper-motor-types-advantages-applications/
https://www.elprocus.com/stepper-motor-types-advantages-applications/

Programming Language Conversion using NLP

ABHIJIT BANERJEE!, MADHUBAN MUKHERJEE!, APARAJITA BANERJEE?!, MD. AALISHAN
RAZA?, SUCHETA BHOWMICK!, SAKSHI BHAGAT!, SUDIPTA BASU PAL?
!Department of CST
University of Engineering and Management, Kolkata India
2Department of CSIT
University of Engineering and Management, Kolkata India
3Department of CST and CSIT University of Engineering and Management, Kolkata
India
banerjeeabhijit111@gmail.com, madhubanmukherjee77@gmail.com, aparajitab535@gmail.com,
aalishan69raza@gmail.com, suchetabhowmick99@gmail.com, sakshibhagat9873@gmail.com,
sudipta_basu68@yahoo.com

Abstract- Natural language processing strives to build
machines that understand and respond to text or voice data—
and respond with text or speech of their own—in much the
same way humans do. NLP models language computationally
and deals with linguistic features of computation. Once a
computer learns to do mathematical calculations it can
perform manycomplex and big calculations much faster than
humans. Similarly, once computer starts to understand the
human languages it can process all aspects of that language
much faster than humans also opening a large number of
possibility. So it cuts down on employment as one computer is
capable of giving an output 10 times faster than a human can.
So it benefits the employer not only financially but also by
giving extremely accurate and faster outcome. Here we lay out
an overall architecture to explain the overall processing. So
now we take a look at the two general classes of systems they
are special-purpose system and general-purpose system,
explaining how they differ and their relative advantages and
disadvantages. After that we point at the few remaining
problems that require additional research. Finally, we
conclude by discussing when natural language processing
technology can be practically used at various levels .We also
discuss about when it will become commercially practical, and
what will be the cost to practically use this technology.

The techniques specifically developed for analysing and
understanding the inner-workings and representations
acquired by neural models of language is EMNLP 2018
BlackboxNLP. The approach includes: investigating the
impact on the performance of neural network on systematic
manipulation of input and also testing whether the
interpretable knowledge can be decoded from intermediate
representations to propose modifications to make the
knowledge state or generated output more and also to examine
the performance of networks on simplified or formal
languages.

In the following report we aim to convert a program of a given
language to an equivalent program of another language. For

that we have taken help of NLP that is Natural Language
Processing. By using Natural Language Tool Kit, we have
successfully identified the variables, datatypes, operators,
keywords, indentations. We have also discussed various aspects
and domains of NLP and some real-world applications of it.

Keywords: Language Conversion, NLP, Keyword
detection, valid Identifier = checking, operators’
identification,checking constants, Datatypes identification,
NLTK, tokens.

l. INTRODUCTION

NLP orNatural Language Processingis a branch of Al that
gives the machine the ability to read, understand and
derive meaning from human languages. Every day we
exchange data via social media or other devices. These
data is extremely useful and data experts implement this
data to machine so that they can mimic human linguistic
behaviour and it saves so much time and effort. It involves
programming technigues to create a model that can
understand the language just like normal human beings.
It can even classify the contents and even generate and
create new composition in human based language.

we don’t even realize the wide use of NLP. we basically
use it daily, like while using autocorrect method in mobile
phones or checking if any document is going to be
plagiarised or not. The Prolong languagell was originally
invented for NLP applications. Its syntax is especially
suited for writing grammars, although, in the easiest
implementation mode rules must be phrased differently
from those intended for a yacc-style parser. Top-down
parsers are easier to implement than bottom-up parsers
but are much slower.

A Application of NLP

Talking about the use of Natural Language Processing
involves how it has evolved in the era of technology. The
basic aim of NLP is not only to understand the single

word to word but also to have the capability to understand
the context based on syntax, grammar, etc of those words,
sentences, and paragraphs to give the desired result out of
it.

In short, NLP gives the machines the ability to read,
understand, drive meaning from the text and often
generate the text from various languages.

NLP-enabled software assists us in our daily lives in
various ways, for example:

. Personal Assistants (Speech recognition): Siri,
Cortana, and Google Assistant

. Machine Translation: Google Translator

. Grammar check: Grammarly app

. Autosuggestion (Sentiment analysis): In search
engines, Gmail, Developer's IDE

. Making Chat bots

B. Working Process of NLP

The working process of NLP not as easy as it may seem.
Basically, it works in 3 steps, Speech recognition — NLU
— NLG

| (Natural Language Generation)
(Natural Language Understanding)

Computers do not directly understand the words and
sentences which belong to human languages. The computer
only understands binary numbers as 0s and 1s. So, we had
to initially develop a way for computers to understand the
words. Word representation is a widely used
implementation for this problem. Word representation is a
technique to represent a word with a vector and each word
has its unique vector representation. Text and word
representation are essential for making computers
understand words and thus we need to encode words into a
format understandable by the computers. One-hot encoding
is one such technique used to convert categorical data into
numerical data. The numerical data is then used by the
algorithms to learn and predict.

In short, we encode the input into numerical form and train
our neural network model with that. And the we decode the
output of the NN to get our desired result.

C. Encoding language into numbers

We can encode the language into numbers in many ways.
The most common is to encode by letters. we generally
use ASCII or Unicode value for that. But due to the
presence of antigram the same number represents two
words in a different order, which might make building a

model to understand the text a little difficult. A better
alternative might be to use numbers to encode entire word
instead of the letters within them.

. TASKS AND TECNIQUES OF NLP
There are different NLP techniques that helps us to

convert the human language into machine understandable
language such as

. Stemming
. Lemmatization
. Tokenization
. Stop words removal.
. Word Sense Disambiguation
. Part of Speech Tagging
A. Stemming

Stemming is a process of reducing similar words
to their stem word. E.g.: - History, Historical —
Histori

B. Lemmatization

Lemmatization is the process of mapping words
into their meaningful base structure. E.g.: -
Reach, Reaching, Reached, Reaches: - Reach

C. Tokenization

Tokenization breaks a sentence into words and
turn them into tokens.

D. Stop words Removal.

Removal of words from sentences which do not contain
any valuable information is known as Stop words
removal. E.g.: - a, the, is, are etc.

Word Sense Disambiguation: It is used to determine if the
Same words can have different meanings in different
sentences.

Part of Speech Tagging: Part of Speech (POS) tagging is
well-known in NLP, which is used to label each word in
a sentence or it can be a paragraph with its appropriate
part of speech. Part of speech includes verbs, adverbs,
adjectives, pronouns, etc.

"l PROPOSED IDEA

The main goal of this project is Conversion of Different
programming languages.

In recent days, learning multiple programming languages

is really time consuming. If there were a system that could
easily convert a general programming language into
another one, then working in different fields would’ve
been much easier.

Suppose a person only knows python and he need to work
in Java for a certain project. Now this kind of compiler
would make it easier. The person will enter his code in
python and the compiler will turn it into Java.

Now this concept was proposed earlier but making it work
is not that easy. As we know that different programming
languages have their own syntax and executing process,
so converting them is not only time consuming but also it
needs a lot of skills.

V. APPLICATION OF NLP IN PROGRAMMING
LANGUAGE CONVERSION of NLP

Here we will try to change a block of code from one
language to another by the use of NLP. For simplicity we
are choosing two Object Oriented Programming
languages, otherwise it would be difficult to change a
Object Oriented Programming language to a procedural
language and vice versa.so for this report we are choosing
python and Kotlin. As of now we are approaching the
problem as mentioned below:

Steps to be followed: -

1. Just like part of speech tagging we must come up
with a method that can tag key words, variables,
constants, different types of operators
(conditional, logical, mathematical).

2. If we can tag and tokenize the block of code like
this it would be a lot easier for the computer to
understand.

3. Then we will feed this tokenized encoded input
to our trained neural network model.

4. After getting the output from the NN we have to
decode it to get our desired result.

5. The NN will only change the words that has been
tagged as keywords or operators.

6. The variable and constants will remain as it is.
while the key words, operators and syntax will be
changed as necessary.

7. We have to follow sequence to sequence
conversion so that the main structure of the code
does not get changed.

A Experimental Setup and Result Analysis:
Theoretical approach for solving this kind of problem: -

Let us consider one simple python code of adding two
integers-

Input program file:-
a=10

b=2 x=a+b if(x>=25):
print(x)

else:
print(x+10)

First, we will tag the variables and constants that is a, b, X
,10,2,25. these variables and constants value won’t
change after conversion.

Then we will tag the key words i.e. print, if, else. we will
tokenize it and feed it to the NN which will give us the
output as the version of this keywords in the desired
language.

After this by using neural machine translation we have to
correctly change the syntax of the code if necessary. And
then after decoding we will get our desired output.
Expected Kotlin code: -

B. Keyword detection

Output: -

a is an identifier
= is an operator
10 is a constant
b is an identifier
2 is a constant

X is an identifier

+ is an operator

if is a keyword

bracket

>= is an operator

25 is a constant

bracket

- is used for indentation
print is a keyword

else is a keyword

C. Challenges:

Implementing this Program is not that easy as we don’t
know if it’ll actually work practically or not. The
challenges that we have faced while implementing the
process are quite a few:

1. Removing ambiguity- Ambiguity is an intrinsic
characteristic of human conversations.
Ambiguity is one of the biggest challenges in
NLP. When trying to understand the meaning of
a word we consider several different aspects,
such as the context in which it is used.

2. Improvement of the performance of individual
analysers, specially at the semantic/pragmatic
level.

3. Definition of new tasks, such as the detection of

exclusivity, parallelism/concurrency, decision
points, or iteration of tasks.

4. Detecting comment lines and text lines
separately.

V. PROPOSED SOLUTION

Solving these problems at once is not a piece of cake.
Therefore, our goal is to find different solutions for the
problems that are rising throughout the implementation
process.

1. segmenting text into meaningful groups.

2. identifying individual tokens within a sentence.

3. Word/phrase order variation.

4. The identification of problem-specific
information and its transformation into structured
form.

5. Determining relationships between entities or
events.

VI. Conclusion and Future scope

Natural Language processing is one of the fastest growing
technologies in todays world. It is like a blessing to the
mankind as it makes every single task which required
human involvement solvable in a very minimum time.
But again every good thing has a dark side too so this
natural language processing has also cut down on
employment as it benefits the employer by doing the task
in an accurate and faster manner. As its processing speed
is ten times faster than human so an employer always
prefer this technology. Innumerous number of research
and development in this technology makes it a
tremendously strong upcoming field which has a dire
need of skilled professionals. With the exponential
growth of multi-channel data like social or mobile data,
businesses need solid technologies to assess and evaluate
customer sentiments. So far, businesses have been happy
analyzing customer actions, but in the current competitive
climate, that type of customer analytics is outdated.

Natural language processing is an Al-complete problem.

It is same as solving central artificial intelligence problem
whose main aim is to make computers as intelligent as
people so that they can think and solve problems like
humans. They can perform all the activities that humans
can perform at a much accurate and faster level and makes
it more efficient than humans. Also it can perform tasks
that humans cannot. Growth of Artificial intelligence
basically predicts the growth of natural language
processing in future. Through natural language computers
or machines or devices understanding of human language
will increase and they will be able to collect understand
and the information online and apply what they learned in
the real world. Combined with natural language
generation, computers will become more and more
capable of receiving and giving useful and resourceful
information or data.

NLP can be used in areas where technology is not
customer or human-facing like voice assistants and
chatbots. NLP is one of the largest growing technologies
in the field of data science. It can be also used to decipher
meaning from unstructured data. NLP will find more and
more applications in everyday technology as and when Ai
and need for applications and humans to inter-
communicate increases.

Till now we only have been able to detect the keywords,
identifiers, constants, datatypes, indentation, operators
etc. In future we aim to convert these tokenized strings
into its respective code form to get the equivalent code in
target programming language.

REFERENCES

[1] Al and Machine Learning for coders By Laurence
Moroney

[2] https://www.qgblocks.cloud/blog/natural-
language-processing-machine-
translation#:~:text=Natural%20Language%20Processing
%20(NLP)%20is,the%20same%20way%20humans%20
do.

[3] https://academic.oup.com/jamia/search-
results?cgb=[{%22terms%22:[{%22filter%22:%22Key
words%22,%22input%22:%22Natural%20language%20
processing%2

2} &gb={%22Keywords1%22:%22Natural%20langua
0e%20processing%22}&page=1&searchType=advanced
&adv=true

[4] https://dl.acm.org/doi/abs/10.5555/3340
[5] https://apps.dtic.mil/sti/pdfs/ ADA567972.pdf

[6] https://arxiv.org/pdf/1904.04063

[7]https://citeseerx.ist.psu.edu/document?repid=repl&ty
pe=pdf&doi=eeaceldl4e266a5cd44fe781a874c662928
602fd

[8] https://www.ibm.com/in-en/topics/natural-
language-
processing#:~:text=IBM%20Watson%20Discovery-
,What%20is%?20natural%20language%20processing%3
F,same%20way%20human%?20beings%20can.

[9] https://towardsdatascience.com/your-guide-to-
natural-language-processing-nlp-48ea2511f6el
[10]https://realpython.com/python-keywords/
[11]https://www.digitalocean.com/community/tutorials/
python-keywords-identifiers
[12]https://www.w3schools.com/python/python_datatyp
es.asp [13]https://mwww.geeksforgeeks.org/python-
operators/

[14]https://www.nltk.org/

Smart Waste Bin Monitoring in Municipal Based on 10T for Clean City

'Sreya Poddar, “Tisa Dutta, *Sunando Chowdhury, “Soumyadeep Mukherjee, *Samprikta Mukherjee

{poddarsreya8, tisadutta78, 650sunando, soumyadeepmukherjee8236, mukherjeesamprikta0 }@gmail.com

BCA 3RD YEAR, IEM KOLKATA

®prof. Manab Kumar Das manab.das@iem.edu.in
Asst. Prof, BCA & M.SC, IEM KOLKATA

Abstract — Rapid increasing urbanization and
increasing population all over the world, there is
a dynamic increase in the amount of waste
disposal has become a matter of concern, and
diseases like malaria, dengue, and cholera are
caused due to overflow of garbage which contains
rotten things which form foul smell and burning
things that cause air pollution to the
environment. As a result of this we human beings
are sufferers, So, we need to maintainthis worst
scenario and we need to keep a track of the
garbage bin so that it will be cleaned in the proper
interval of time. So, we are implementing this
project which willidentify the waste by checking
its humidity and temperature and will also check
the level of the garbage bin so that it doesn't
overflow and pollute the environment. In this
project the garbage level in each bin is monitored
using ultrasonic sensors present in every bin,
rotten and burning elements or any such
abnormal situation that arises willbe identified by
the Gas sensor and DHT11 sensor. The Gas,
ultrasonic sensor, and Humidity sensor will read
the data and will send it to the Cloud server and
then the Municipal Control room will be able to
monitor the information from the Cloud server
through a GUI interface. When more than 70
percent of the garbage bin is filled, or any
situation mentioned above arises thebuzzer will
give the indication. The system isdriven by a
microcontroller- ESP-32 which is working as the
brain of the operation, andit is programmed using
Embedded C. All thedevices and Cloud Server
plays a key role toimplement the project.

Keywords- Waste Bin, 10T Sensors anddevices,
Cloud Server.

l. INTRODUCTION

One of the famous technologies in this world is
the Internet of Things (1oT). The term loT was
first used by Ashton in 1999. l1oT works with
devices like bulbs, cameras, sensors, relays, and
some internet-connected microcontrollers
among other things. Various applications of IoT
are smart health, smart city, environment

threatening diseases that in turn harm the lives of a
whole city and country as well. Our generation’s
main problems are the prevention, tracking, and
treatment of these wastes . The current waste
disposal schemes are not effective enough to
dispose of the huge amount of waste generated
from cities, leading to the spread of diseases, and
prevention of harmful situations. So, we propose an
alternative waste disposal strategy, consisting of a
smart waste bin with three sensors for real- time
monitoring of the garbage bin.

Different sensors are used for checking the
temperature and humidity with level detection. In
this innovative system, smart bins are installed in
urban areas at different places that store garbage.
The labour work, time, and cost will be less
required than the traditional garbage collection
system. Municipalities and corporations struggle to
keep up with the outdoor bins to determine when to
clean them or whether they are completely filled or
not, that is why the level of the garbage or any
harmful situation that arises in the bins is
monitored continuously and is emptied timely.
The advantages of this technique are as follows:

i) The above dustbin also sends a mobile
notification when the dustbin is almost filled.
i) In this process, various electronic

components are used to make this dustbin smart.
As per the report published by World Bank,
approximately 1.3 billion tons of municipal waste
is generated every year and it is expected to rise to
approximately 2.2 billion tons per year by 2025.
Due to a lack of proper cleaning of waste, a large
amount of untreated waste is dumped into landfills.
Implementing our project at the regional level will
reduce the expenditure on waste disposal, and
make people aware that how much cleaning is
important for us and for the environment too.

1. LITERATURE SURVEY
Aniga Bano,1 Ikram Ud Din, and Asma A. Al-
Huqail. Presented “A loT-Based Smart Bin for

Real-Time Monitoring and Management of
Solid Waste” in which they aim to keep the
environment green and clean, monitoring and
disposing of the waste is very important these
days. Improper disposal and poor monitoring of
collected waste and waste bins can cause serious
damage to human lives. Therefore, a waste
management mechanism is proposed for smart
cities, named SBM (smart bin mechanism) in
order to sanitize and clean the environment
intelligently.[1] V R Ravil*, M Hema2 , S
SreePrashanthini3 and V Sruthi4. Designed an
loT-integrated smart bin for Smarter Waste
Disposal System is devised. In the proposed
work an alternative efficient and economical

waste disposal strategy is developed. A newer
waste bin is designed in the proposed work and
is attached with four sensors for effective real-
time monitoring of the smart bin conditions.
Whenever the garbage level in the smart bin
reaches a programmed threshold level, an alert
message is sent to the cleaning authority to
empty the smart bin. Thus, the proposed waste
disposal scheme using smart bins can effectively
assist as a benchmark for waste disposal
schemes used in smart cities [2] S. Vishnu , S.
R. Jino Ramson* , Samson Senith, Theodoros
Anagnostopoulos, Adnan M. Abu-Mahfouz |,
Xiaozhe Fan, S. Srinivasan and A. Alfred
Kirubaraj proposed “IoT-Enabled Solid Waste
Management in Smart Cities” in which they say
as most homes are equipped with a wireless
internet connection, it is inferred that the Wi-Fi-
based solution is well suited for monitoring the
household bins. This will minimize the
additional infrastructure expense. Therefore,
this work proposes an loT-based solid waste
management system for smart cities. The main
contributions of this work in contrast to the
existing solutions are as follows —

) Hybrid Network Architecture to monitor
the household and public trash bins.

i) Solar energy harvesting facility to
extend the lifetime of the end nodes.

iii) A GPS module is embedded to evaluate
the Geo-location of the trash bins.

iv) An intelligent GUI is employed to view
the status of every trash bin [3]. Tariq Ali
Muhammad Irfanl, Abdullah Saeed Alwadiel
& Adam Glowacz “loT-Based Smart Waste Bin
Monitoring and Municipal Solid Waste

Management System for Smart Cities” where
Numerous loT-based smart technologies have been
developed to deal with different issues associated
with trash management systems in smart cities.
From the literature, it is recognized that the most
significant issue is solid waste management for the
smart city. Scholars have used a variety of
strategies and procedures to overcome these
challenges. In this system, sensors sense the level
of waste in the bins and send alerts to the controller.
A microcontroller encodes these alerts and
forwards them to the main central processing unit
[4]. B.Balaji Naik, T.Sai Kiran, B.K.N.Harish,
J.Hermes Sujit ,D.Sai & Kiran written “IOT Based
Waste Monitoring System for Smart Cities.” where
they describe The Internet of

Things (IoT) technology is transforming society in
a variety of fields, including healthcare, industrial
automation, transportation, and smart cities, in the
age of interconnected devices. In this study, we
present an internet of things (loT)-based smart
waste monitoring system that enables waste
management authorities to continually monitor the
status of trash cans located at various places and, as
per the status, take suitable actions to collect it
quickly and effectively.[5]Himadri Nath Saha,
Supratim Auddy, Subrata Pal, Shubham Kumar,
Shivesh Pandey, Rakhee Singh, Amrendra Kumar
Singh, Swarnadeep Banerjee, Debmalya Ghosh,
Sanhita Saha, “Waste Management using Internet
of Things (IoT)”, IEEE 2017.in which The trash
can is battery- or solar-powered and functions as a
Wi-Fi hotspot. It measures the volume of waste
present inside the compartment and wirelessly
sends information about the fill level to a cloud
server. Time is used more effectively as a result,
and the roads are cleaner. So, in this paper, we have
proposed a system that can be deployed in general-
purpose dust bins placed in public places. This
system allows us to monitor its status remotely
over the internet for efficient waste
management.[6] A Vanitha proposed that the
present day it has been seen that the dustbin is
overflown with garbage, so the proposed system
will help to avoid the overflow of dustbin. This
system will give the real time information about the
status of the dustbin [7]. S Vinod Kumar proposed
that, with the help of Ultrasonic sensor, the level of
waste in the dustbins is detected. To measure the
weight of the dust bin force sensor is used

[8].

. METHODOLOGY

A. Working Algorithm of Smart Waste

Bin:
STEP 1: Start (Initialize the process).

STEP 2: Gather all the information on the waste .
by reading the sensors. B jiiony Mo Jg
checked through ultrasonic

sensor, MQ2 gas sensor, DHT-
11 motion sensor

STEP 3: Temperature, the humidity will check
through the DHT-11 sensor and level detection
will check through the ultrasonic sensor.

NO 4
Check whether the'

dustbin is full = ?

STEP 4: Now it will check whether the bin is

full or not.
STEP 5: If it is above the limit, then a message L
will be sent to the cloud server. Send a message to

the cloud server /
local server

STEP 6: After receiving the message, a garbage
vehicle will be sent for the waste collection.

STEP 7: After collection, it will show the by
current status of the dustbin.

Y

. 4

STEP 8: Otherwise, the scanning process of the e
garbage will repeat in a loop. the dustbin

STEP 9: Stop (Process Terminated).

B. Flowchart: Fig. 1: Process flow diagram of proposed
methodology

C. Proposed Model

B

Real Time Data Monitoring

Ultrasonic
Sensor

|Tl|:? =

[]
35

I Smart Phone

19l
8[1]

Dht 11 sensor
and MQ2 Gas

Sensor

N T - 5
Fig. 2: Block Diagram of Proposed Model
The Smart Waste Bin system is driven by the

Microcontroller ESP 32. All the components that
are connected to ESP 32 are programmed in C++

language and it reads the input/output pins of the
components. The temperature and humidity are
monitored by using the DHT11 sensor and it
will be displayed on the dashboard. Whenever
the DHT11 sensor detects unusual temperatures
in the bin which can hamper the system, a
notification will be sent to the clearing
authorities to remove it. The measure of the
dustbin level is calculated by the Ultrasonic
sensor connected at the edge of the dustbin.
When the dustbin is full, the message- "BIN IS
FULL" is sent to the cleaning authorities. The
message is sent using the WI-FI that provides
communication between the bin and the
authority. The sensor sends the data to the
Microcontroller which is connected to the Cloud
and then it will be displayed on the dashboard.
As the location of the bins is already mentioned
in the code, when the bins are overloaded, they
will be displayed on the dashboard with their
location.

D. Components Requirement:
(a) Software Requirement:

1. Arduino IDE: The Arduino Integrated
Development Environment - or Arduino
Software (IDE) - contains a text editor for
writing code, a message area, a text console, a
toolbar with buttons for common functions,
and a series of menus. It connects to the
Arduino hardware to upload programs and
communicate with them.

2. Arduino IOT Cloud: Arduino IoT Cloud
is an application that helps makers build
connected objects quickly, easily, and securely.
You can connect multiple devices and allow
them to exchange real-time data. You can also
monitor themfrom anywhere using a simple user
interface.

(b) Hardware Requirement:

ESP-32: ESP-32 is a series of low-cost, low-
power systems on a chip microcontroller with
integrated Wi-Fi and dual-mode Bluetooth. The
ESP32 seriesemploys either a Ten silica Extensa
LX6 microprocessor in both dual-core and
single-core variations, an Extensa LX7 dual-

core microprocessor, or a single RISC V-core.
RISC- microprocessor and includes built-in
antenna switches, RF balun, power amplifier, low-
noise receive amplifier, filters, and power-
management modules. ESP32 is created and
developed by Express if Systems, a Shanghai-
based Chinese company, and is manufactured by
TSMC using their 40 nm process. It is a successor
to the ESP8266 microcontroller.

Fig. 3(a): Microcontroller ESP-32

Power Supply: A power supply is an electrical
device that supplies electricpower to an electrical
load. The main purpose of a power supply is to
convert electric current from a source to the correct
voltage, current, and frequency to power the load.
As a result, power supplies are sometimes referred
to as electric power converters. Some power
supplies are separate standalone pieces of
equipment, while others are built into the load
appliances that they power. Examples of the latter
include power supplies found in desktop computers
and consumer electronics devices. Other functions
that power supplies may perform include limiting
the current drawn by the load to safe levels,
shutting off the current in the event of an electrical
fault, power conditioning to prevent electronic
noise orvoltage surges on the input from reaching
the load, power-factor correction, and storing
energy so it can continue to power the load in the
event of a temporary interruption in the source
power (uninterruptible power supply).

DHT-11 Sensor: The digital temperature and
humidity sensor DHT11 is a compositesensor that
contains a calibrated digital signal output of
temperature and humidity. The technology of a
dedicated digital modules collection and the
temperature and humidity sensing technology are
applied to ensure that the product has high
reliability and excellent long-term stability. The
sensor includes a resistive sense of wet components
and an NTC temperature measurement device and

is connected to a high-performance 8-bit
microcontroller.

6. Jumper Wires: A jump wire is an
electricalwire, or group of them in a cable,

Fig. 3(b): DHT-11 Sensor

. Ultrasonic Sensor: Ultrasonic transducers
and ultrasonic sensors are devices that
generate or sense ultrasound energy. They
can be divided into three broad categories:
transmitters, receivers, and transceivers.
Transmitters convert electrical signals into
ultrasound, receivers convert ultrasound into
electrical signals, and transceivers can both
transmit and receive ultrasound.

. Breadboard: A breadboard, solderless
breadboard, or protoboard is a construction
base used to build semi-permanent
prototypes of electronic circuits. Unlike a
perf board or stripboard, breadboards do not
require soldering or destruction of tracks and
are hence reusable. For this reason,
breadboards are also popular with students
and in technological education.

Fig. 3(d): Breadboard

with a connector or pins at each end, which
iIs normally used to interconnect the
components of a breadboard or other
prototype or test circuit, internally or with
other equipment or components, without
soldering.

Fig. 3(e): Jumper Wires

. Gas Sensor: Gas sensors are devices that

candetect the presence and concentration of
various hazardous gases and vapors, such
as toxic or explosive gases, volatile organic
compounds (VOCs), humidity, and odours.

Fig. 3(f): Gas Sensor

. Buzzer: An audio signalling’s device like a

beeper or buzzer may be electromechanics
or mechanical type. The main function of
this is to convert the signal from audio to
sound. Generally, it is powered through DC
voltage and used in timers, alarm devices,
printers, alarms, computers, etc. Based on
the various designs, it can generate different
sounds like alarms, music, bell & siren.

Fig. 3(g): Buzzer

V. RESULT & DISCUSSIONS

As we do not have any proper waste management
system to date, the hazardous impact of this
unrestrained condition is continuously affecting the
environment. So, we need to take the initiative to
maintain the deteriorating condition we live in to
make our city smart and clean. In order to make this
happen we have used IoT technology, by using which
we have made this Smart Waste Bin. Here we have
used the Microcontroller ESP-32, DHT-11 Sensor,
Gas Sensor, and other components mentioned above.

L - 2
Fig. 4: Circuit Design of proposed model

o or cuow] g ey 0 - # e
o u & 1 Smart Waste B

N/A

Fig. 5: Dashboard Image to display real timedata.

\2 CONCLUSION

Due to the rise in urbanization, waste is increasing
very fast. Therefore, waste management is an
important need to protect the environment. Any
discarded object that hasbeen passed to a party, a
crowded room, a social structure, a school, or an
apartment is considered to be waste This method
of implementation saves time in level detection by

()

humans and affordability in domestic applications.
This Smart Dustbin prototype will contribute a lot to
society to provide a clean and hygienic environment.
The project focuses on "loT technology" and how it can
be used in "Smart City applications" (IoT). The
initiative will aim to minimize the use of trashcans in
the future. The main purpose is to cleanthe dustbin and
better clean the environment.
By continuously using this system to find the maximum
height of rubbish in a dustbin that isplaced in it. If a dustbin
is nearly 70 percent, a mail notification can be sent
immediately. Thiswould decrease the stray trash on the
streets.

REFERENCES

[1] Aniga Bano, Ikram Ud Din and Asma A. Al-Hugail
"AloT-Based Smart Bin for Real-Time Monitoring and
Management of Solid Waste" Hindawi Scientific Programming
Volume 2020, Article ID 6613263, 13 pages

[2] V R Ravi, M Hema, S SreePrashanthini

and V Sruthi " Smart bins for garbage monitoring in smart cities
using loT system™ Published under licenceby IOP Publishing
Ltd IOP Conference Series: Materials Science and Engineering,
Volume 1055, International Virtual Conference on Robotics,
Automation, Intelligent Systems and Energy (IVC RAISE
2020) 15th December 2020, Erode, India.

[3] S. Vishnu, S. R. Jino Ramson , Samson Senith,
Theodoros Anagnostopoulos, Adnan M. Abu-
Mahfouz,Xiaozhe Fan, S. Srinivasan and A. Alfred Kirubaraj
"loT-Enabled Solid Waste Management in
SmartCities"SmartCities2021,4,10041017.10.3390/sm
artcities4030053, Received: 25 May 2021

Accepted: 5 July 2021

Published: 14 July 2021

[4]] Integrated Sensing Systems and Algorithms for
SolidWaste Bin StateManagement Automation Md. Abdulla Al
Mamun, Mahammad A. Hannan, Member, IEEE, Aini Hussain,
Member, IEEE, and Hassan Basri VOL. 15,NO. 1, JANUARY
2015

[5] P. H. Brunner and J. Fellner, “Setting priorities for
waste management strategies in developing countries,” Waste
Manage. Res., vol. 25, no. 3, pp.234-240, Jun. 2007

[6] Himadri Nath Saha, Supratim Auddy, Subrata Pal,
Shubham Kumar, Shivesh Pandey, Rakhee Singh, Amrendra
Kumar Singh, Swarnadeep Banerjee, Debmalya Ghosh, Sanhita
Saha, “Waste Management using Internet of Things (IoT)”,
IEEE 2017.

[7] A.Vanitha,.PadmaPriya ,S Maheshwari,"Waste
Management System Using lot MrAnuradha",May2018

DOI:10.22214/ijraset.2018.5477.

[8] S. Vinoth Kumarl, T Senthil Kumaran2, A Krishna
Kumar and Mahantesh Mathapati4,"SmartGarbage Monitoring
and Clearance System using Internet of Things', August 2017
DOI:10.1109/ICSTM.2017.8089148

Conference: 2017 | EEE International Conference on Smart
Technol ogiesand Management for Computing,
Communication, Controls, Energy andMaterials (ICSTM).

	B. Flowchart:
	C. Proposed Model
	Fig. 2: Block Diagram of Proposed Model
	The Smart Waste Bin system is driven by the Microcontroller ESP 32. All the components that are connected to ESP 32 are programmed in C++ language and it reads the input/output pins of the components. The temperature and humidity are monitored by usin...
	D. Components Requirement:
	IV. RESULT & DISCUSSIONS
	V. CONCLUSION
	REFERENCES

