Detecting Encryption Vulnerabilities with
Lossless Compression

Richard Hansen
rhhansen @captechu.edu
Capitol Technology University
11301 Springfield Road, Laurel, MD 20708

ABSTRACT: Ciphertext entropy is a key
property for detecting the use of insecure
encryption modes such as Electronic Code
Book (ECB) and for testing symmetric=key
cryptographic algorithms. This paper discusses
the use of lossless compression utilities as a
proxy measurement for entropy and its use in
detecting a limited set of encryption
vulnerabilities. We also note the use of off-the-
shelf algorithms yields a teaching tool for
Information Technology and Cybersecurity
students. Finally, small and consistent
differences between encryption modes provide
the potential to identify the encryption
algorithm from compression factors.

Keywords: Cryptography, Cryptology,
Encryption, Entropy, Compression,
Cybersecurity, Vulnerability Assessment,
Information Assurance, ECB

INTRODUCTION

In April, 2020 it was revealed that
Zoom Meetings provided misleading
information to clients regarding the
encryption algorithm used for protection of
confidentiality (Marczak and Railton,
2021). An encryption mode with known
vulnerabilities, Electronic Code Book or
ECB, was used without being disclosed to
users and an unknown number of meetings
were compromised/

This mode may be in use by other
systems and applications. Developers, IT

staff and the user community may not
understand issues related to algorithms,
modes and other encryption features (Bai et
al., 2020). One potential method for
detecting the use of ECB is measuring a
property known as entropy for the output of
the encryption process, the ciphertext.
Entropy measurements can be useful for
detecting a limited number of
vulnerabilities including the use of ECB.
Entropy measures the lack of order and
predictability in a file; a low entropy
measurement means there are patterns that
can be detected or predicated and a high
entropy measurement means there are few
patterns that can be detected or predicted.

Compression is also used to identify
patterns in data such as repeated characters
or sequences of characters that have a
mathematical relationship. The identified
patterns are used to reduce the size of data
so it will use less resources when stored or
transmitted.

This paper details a qualitative
study that provides the following
contributions:
= Experimental results that validate the

use of lossless data compression to
detect the use of ECB mode in several
algorithms, and detection of a limited
number of issues related to poorly
chosen encryption keys and
initialization vectors.

= Experimental results that establish a
relationship between measured entropy
of ciphertext generated using symmetric
key algorithms and the degree of
lossless data compression possible with
the commonly available GNU Zip
utility.

= Techniques for use of lossless data
compression as a teaching tool for the
concepts of entropy as it relates to
encryption/

The Problem — Detection of

Vulnerable ECB Mode Encryption

Zoom Meetings claimed to use
strong encryption to protect the
confidentiality of meetings based on the

Advanced Encryption Standard algorithm

with a 256-bit key length (AES-256). In

reality Zoom used a weaker AES variant,

AES-128 in the Electronic Code Book

(ECB) mode. ECB mode is vulnerable to

exploitation when used for large amounts

of data. Its use may be detected using
specially selected inputs, known as
plaintext, and entropy measurements of the
resulting ciphertext output. Other problems
may cause issues with encryption
algorithms and their software
implementations, such as values for keys
and initialization vectors that are easily
guessed or that produce undesired results.

Entropy refers to the lack of
predictability in ciphertext. Ideally this
means that knowledge of the previous bits
and bytes in a file or stream of data does
not allow prediction of the value of the next
bits or bytes. Useful patterns should be
obfuscated by a properly designed and
implemented encryption algorithm which
produces ciphertext with high degree of
entropy (unpredictability).

Modern encryption algorithms such as
the Advanced Encryption Standard (AES)
use the principles of confusion and
diffusion to obfuscate patterns in data and
increase entropy. These terms originated

with Claude Shannon’s then-classified
paper “A Mathematical Theory of
Cryptography” (Shannon, 1945). Confusion
refers to representing a given pattern of bits
in plaintext with a different pattern of bits
in ciphertext. Diffusion refers to
transposing bits, that is changing their
position in a systematic manner. Applying
both techniques increase the difficulty of
detecting useful patterns in ciphertext.

Testing for the presence of low-
entropy encrypted data may be difficult for
IT and Cybersecurity staff. Applications are
available to measure ciphertext entropy,
however the knowledge and skills required
for their use is not part the NIST NICE
framework nor covered by the COMPTIA
Security+ Exam (Newhouse, 2017). The
next section of this paper details how the
proposed method, data compression, may
be used as a proxy measurement for
entropy.

A literature search was performed
to find related work. The paper
Relationship Between Entropy and Test
Data Compression (Balakrishnan & Touba,
2007), examines the performance of
different compression techniques and for
test data generated by system-on-a-chip
designs. Entropy measurements are used to
establish theoretical limits for the amount
of compression. The authors’ detailed
examination of compression algorithms is
useful for those considering similar
problems.

On Compression of Data Encrypted
with Block Ciphers (Klinc et al., 2009)
investigates the compression of high-
entropy ciphertext. The authors discuss an
approach may provide significant
compression for certain sets of ciphertext
inputs.

Distinguishing Compressed and
Encrypted File Fragments (De Gaspari et
al., 2020) examines the problem of using
entropy to detect encrypted files when

compressed files may have similar entropy
values. Current approaches were not
successful and the authors created a
learning-based classifier, ExCoD that can
differentiate between the two types of files.

COMPRESSION AS A PROXY FOR
ENTROPY

Data compression is designed to
decrease the amount of storage required for
a given set of data by finding patterns that
can be reduced to more compact
representations. This led to the construction
of a hypothesis for this paper and a
supporting lemma:

» The author hypothesizes that it is
possible to use compressibility as a
proxy measurement of entropy for
detecting the use of Electronic Code
Book (ECB) mode encryption with
a modern cryptographic algorithm
and selected plaintext consisting of
a single repeated character.

= The author proposes that there is
mathematical relationship between
the measured entropy of encrypted
data and the measured amount of
compression provided by readily-
available applications.

An experiment was designed to
generate data to test the hypothesis and the
associated lemma. First, a series of
plaintext files were specified and then
generated. Then a process was designed to:

= Encrypt the plaintext files.

= Measure the entropy of the
encrypted file.

* Compress the encrypted file.

= (alculate the change in size of the
compressed file Vs the
uncompressed file.

A file size of 2,560 bytes was
chosen. This will contain multiple blocks of

data from the largest block size in use
among modern cryptosystems. Plaintext
files containing repeated single characters,
nulls (0x00), were generated. Plaintext files
containing a single set and multiple
repeated sets of random binary data were
also generated. The Linux “dd” utility was
used to read random data from the Linux
/dev/random device.

There are two types of file
compression in general use, lossless and
lossy. Lossless compression has the ability
to exactly recreate the original data and is
widely used for documents and other files
that will suffer from changes to the data.
Lossy compression provides a greater
amount of compression at the cost of an
inexact replication of the original data.
Lossy compression is useful for video,
images, audio, and other data where small
differences are acceptable. Lossless
compression was selected for use to allow
for an exact recreation of the original files.

Two commonly available lossless
algorithms are bzip2 and zip, both of which
can be used from the command line for
automating the encryption, compression
and measurement process (“the process”)
on Windows and Linux. Experiments found
that gzip encryption provides a greater
amount of compression for ciphertext files
and gzip was selected for use.

Data was encrypted using the
“openss]” command-line encryption
application. It supports many modern
encryption algorithms and has command
line options that assist with automating the
process.

Entropy was measured using the
Linux “ent” command-line application. The
accuracy was measured against the
Cryptool Window GUI application used for
cryptography research and education.
Results from the tools were compared and
there was less than a 2% difference in
measured entropy values. The “ent”

application was selected for its ability to be
used from the command line to automate
the process.

The experiments and resulting data
are described Experiments and Data below.
Conclusions and Further Research
describes the application of these
techniques to Cybersecurity & Information
Assurance education.

EXPERIMENTS AND DATA

Testing was performed using Kali
Linux version 2021.2 in a VMWare virtual
machine. Encryption was performed using
the openssl utility version 1.1.1k. Entropy
was measured using the ent utility, build
date 11/22/20. Encryption, compression,
and entropy measurements were automated
with zsh shell scripts.

Input files were constructed to
address the hypothesis and the associated
lemma. A 2,560 byte file consisting of nulls
(0x00, all bits set to “0”) was used as
plaintext. The use of a single 8-bit character
negates concerns about byte-alignment
within each block of data. Each algorithm
and mode were tested with a key of all
nulls, 3 randomly generated keys, and a key
with all bits set to OxFF repeated (all bits
set to “17). For those modes requiring
Initialization Vectors (IVs), each algorithm
and mode were tested with an IV
containing all nulls, 3 random IVs, and an
IV containing OxFFs.

Three encryption algorithms and
three modes of encryption were selected for
testing. The first algorithm is the Data
Encryption Standard (DES) which has a 56-
bit key and a 64-bit block size. DES was
originally developed by IBM and is the
oldest of the three algorithms. The second
algorithm 1s the SEED algorithm which has
a 128 bit-key and a 128-bit block size.
SEED was developed by the South Korean
government for use by South Korean
government, defense, and commercial

organizations. The third algorithm, the
Advanced Encryption Standard (AES), is a
modern symmetric cipher endorsed by the
United States’ National Institute of
Standards and Technology (NIST). AES
can use a 128-bit, 192-bit, or 256-bit key
and has a 128-bit block size. The 256-bit
key size was used for these tests.

Each algorithm was tested in its
Electronic Code Book (ECB), Cipher Block
Chaining (CBC), and Output Feed Back
(OFB) modes. For any given algorithm and
key, ECB provides the same result each
time a given piece of data is encrypted
using that key. CBC and OFB are more
secure modes that use an initialization
vector (I'V) in addition to the key.

Plaintext files containing sequences
of random characters were included to
measure their effect on entropy and
compression. The first file contained 2,560
bytes of random characters (0x00-0xFF),
the second contained 5 repeated sections of
512 random bytes, the third contained 10
repeated sections of 256 random bytes, and
the fourth contained 20 repeated sections of
128 random bytes.

During testing it was noted that the size
of the ciphertext filename had a small effect on
the resulting file size due to large filenames
requiring more storage space than small
filenames. The calculations for compression
percentages made accommodations for this
issue.

The input files, shell scripts used to
automate the process, and files containing
experimental results are have been
uploaded to Github and are available to the
public.

Proving the Hypothesis

Figure 1 below shows the
compressed size of the ciphertext output for
the ECB algorithm as a percentage of its
original size, the type of plaintext, and the
encryption key. In all cases encryption of
plaintext consisting of nulls resulted in

ciphertext that was compressed to a small
fraction (2%-3%) of its original file size.

Compressed Size (%) vs Entropy

58 samples

Figure 1 Compressed Size of Ciphertext vs

Measured Entropy
Note - (R) =Random Compressed
Algorithm Plai Key Entropy Size
DESECB MNulls Key 0- Nulls 3.030 2.26%
DESECB Mulls Key 1-(R) 3.027 2.26%
DESECB Mulls Key2-(R) 3.030 2.26%
DESECB Nulls Key 3 - (R) 3.030 2.26%
DESECB Nulls Key 4 - Oxff's 3.030 2.26%
DESECB Random (R) Key 0 - Nulls 7.942 101.25%
DESECB 5x512 (R) Key 0 - Nulls 7.637 23.44%
DESECB 10x256 (R) Key 0 - Nulls 7.187 12.93%
DESECB 20x128 (R) Key 0- Nulls 6.678 7.75%
DESECB Random (R) Key 1-(R) 7.933 101.25%
DESECB 5x512 (R) Key 1-(R) 7.577 23.40%
DESECB 10x256 (R) Key1-(R) 7.106 12.97%
DESECB 20x128 (R) Key 1-[R) 6.406 8.57%
SEED128ECB Nulls Key 0 - Nulls 4.054 3.03%
SEED128ECB Nulls Key 1-(R) 4,050 3.03%
SEED128ECB Nulls Key 2 - (R) 3.930 3.03%
SEED128ECB Nulls Key 3 - (R) 3.800 3.03%
SEED128ECB Nulls Key 4 - Oxff's 4.050 3.03%
SEED128ECB Random (R) Key 0 - Nulls 7.822 101.32%
SEED128ECB 5x512 (R) Key O - Nulls 7.670 23.56%
SEED128ECB 10x256 (R} Key 0 - Nulls 7.188 13.12%
SEED128ECB 20x128 (R) Key 0- Nulls 6.613 7.92%
AES256ECB Nulls Key 0 - Nulls 3.803 2.99%
AES256ECB Nulls Key 1-(R) 4.047 2.99%
AES256ECE Nulls Key 2 - (R) 4.048 2.99%
AES256ECB Nulls Key3-(R) 4,054 2.99%
AES256ECB Nulls Key 4 - Nulls 3.923 2.99%
AES256ECB Random (R) Key 0 - Nulls 7.926 101.28%
AES256ECB 5x512 (R) Key 0 - Nulls 7.623 23.45%
AES256ECB 10x256 (R) Key 0 - Nulls 7.168 13.04%
AES256ECB 20x128 (R) Key 0 - Nulls 6.453 7.88%

Figure 2 — ECB Compression Results

Encrypting a totally random
plaintext file results in a file that is a
approximately 1% larger than the original
file for all algorithms. The larger size is due
to gzip compression’s internal
representation of data that has few useful
patterns in the ciphertext; the original file is

replicated with additional overhead needed
by the gzip algorithm. The table also shows
that compressing files with repeated
random sequences resulted in significant
decreases in size and lower values for
entropy.

The results shown in Figure | and 2
above prove the Hypothesis. Lossless
compression can be used as a proxy for
entropy to detect the use of ECB using
chosen plaintext for the three algorithms
tested.

Proving the Lemma

As shown in figures 1 and 2 above,
compression and entropy were measured
for 58 ciphertext and plaintext files.
Entropy measurements ranged from 0.00 up
to 7.947 where 0.00 is the minimum
possible and 8.00 is the maximum possible.
The compressed files ranged from 0.6% to
101.2% of the uncompressed file size.

The graph in Figure 1 shows that a
logarithmic relationship exists between
measured entropy (0-8) and the compressed
file size expressed as a percentage of its
original size, proving the lemma.

Detecting Other Vulnerabilities, DES

“Weak Keys”

Some implementations of DES are
known to have issues with certain keys,
such as repeated 0x00 (nulls, no bits set)
and repeated Oxff (all bits set). These
resulted in highly compressed files (2% of
original size) and they had lower entropy
than files created with random keys (2.5 vs
7.9) as shown in Figure 3 below.

MNote - (R) =Random Compressed
Algorithm Plaintext Key v Entropy Size
DESCBC Nulls Key 0- Nulls IV0-Nulls 2.532 2.38%
DESCBC Nulls Key1-(R) IV1-(R) 7.923 100.97%
DESCBC Nulls Key2-(R} IV2-(R) 7.915 100.97%
DESCBC Nulls Key3-(R) IV3-(R) 7.936 100.97%
DESCBC Nulls Key 4 - Oxff's IV 4-0xff's 2,532 2.41%
DESOFB Nulls Key 0 - Nulls IV 0-Nulls 2.500 2.07%
DESOFB Nulls Key1-(R) IV1-(R) 7.923 100.98%
DESOFB Nulls Key2-(R) IV2-(R) 7.915 100.98%
DESOFE Nulls Key3-(R) IV3-(R) 7.937 100.98%
DESOFB Nulls Key 4 - Oxff's IV 4 -0xff's 2.500 2.07%

Figure 3 - Key and IV Issues with
OPENSSL DES Encryption

These results were unexpected by
the researcher. Further investigation
showed that this vulnerability and the
underlying implementation issues are well
known.

SEED and AES - Non-ECB Modes

The SEED and AES encryption
algorithms had a compressed file size
slightly larger than the ciphertext files
themselves, indicating little or no
compression was possible when used the
CBC and OFB modes. The output files had
a consistently high entropy in excess of
7.92 as shown in Figure 4 below.

Note - (R) =Random Compressed

Algorithm _ Plaintext Key v Entropy Size
SEED128CBC Nulls Key 0 - Nulls IVO-Nulls 7934 101.05%
SEED128CBC Nulls Key1-(R) V1-(R) 7.926 101.05%
SEED128CBC Nulls Key 2-(R) IV2-(R) 7.936 101.05%
SEED128CBC Nulls Key3-(R) IV3-(R) 7.947 101.05%

SEED128CBC Nulls Key 4 - Oxff's IV4-0xff's 7928 101.05%
SEED1280FB Nulls Key - Nulls IVO-Nulls 7.934 101.05%

SEED1280FB Nulls Key1-(R) W1-(R) 7925 101.05%
SEED1280FB Nulls Key2-(R) M2-(R) 7935 101.05%
SEED1280FB Nulls Key3-(R) IV3-(R) 7946 101.05%

SEED1280FB Nulls Key 4 - Oxff's IV 4-0xff's 7927 101.05%
AES256CBC Nulls Key O-Nulls IVO-Nulls 7930 101.01%

AES256CBC Nulls Key1-(R) W1-(R) 7932 101.01%
AES2S6CBC Nulls Key2-(R) W2-(R) 7932 101.01%
AESISECBC Nulls Key3-(R) W3-(R) 7931 101.01%

AES256CBC Nulls Key 4 - Oxff's IV 4-0xff's 7931 101.01%
AES2560FB MNulls Key 0 - Nulls IWO-Nulls 7930 101.02%

AES2560FB Nulls Key1-(R) W1-(R) 7931 101.02%
AES2560FB Nulls Key2-(R) W2-(R) 7933 101.02%
AES2560FB Nulls Key3-(R) W3-(R) 7930 101.02%

AES2560FB Nulls Key 4 - Oxff's IV4-0xff's 7.930 101.02%

Figure 4 High-Entropy — SEED and AES in

CBC and OFB Modes

Entropy measurements and the size
of compressed files indicate that these
algorithms successfully transformed
plaintext with very low entropy, 0.0, into
very high entropy ciphertext. As shown in
Figure 4, a possible indicator of high-
entropy ciphertext is an expansion in size
when compressed with GNU Zip.

OTHER APPLICATIONS

The use of compression as a proxy
measurement for entropy would be useful
for educating professionals in the
workplace and students through hands-on
methodologies such as Discovery Learning
and Experiential Learning. Exercises based
on compressed file size may be used to
provide competency at Levels 1, 2 and 3 of
Bloom’s Revised Taxonomy
(Remembering, Understanding, Applying)
(Krathwohl, 2002, p. 215). Comparisons
can be made using easily understood
metrics such as file sizes pre- and post-
compression. Identification of repeated
sequences can be related to compression,
where repeated sequences are stored once
and compact “pointers” act as placeholders
for the sequences in the compressed file.

Jerome Bruner’s Theory of
Discovery proposes that learners use past
experiences and knowledge to discover
new facts and relationships through hands-
on interaction with their environment
(Mcleod, 1970). Experiential Learning also
emphasizes hands-on experimentation. Lab
experiments that provide for rapid feedback
from experimentation will help students
quickly build an internal representation for
the relation between compressibility and
entropy. Per Kolb, “the methods of
grasping experience are abstract
conceptualization and concrete experience
“(Kolb, 1984)(Cherry, 2020). Conventional
curriculums based on mathematics is

focused on abstract representations. A
complementary or alternate approach can
use hands-on experience with the learner
performing tasks and observing results in
real-time to build their own base of
knowledge and experience. Students will
then be better prepared to understand
abstract concepts such as entropy and
Shannon’s work on Information Theory.

CONCLUSIONS AND FURTHER

RESEARCH
Conclusions

The experimental results support the
conclusion that ECB-mode encryption for
symmetric algorithms such as DES, SEED,
and AES can be detected via use of chosen
plaintext input and then compressing the
ciphertext output with the GNU Zip
lossless compression application. This
conclusion may be generalized due to ECB-
mode’s inherently vulnerability to this type
of analysis, and because a number of file
compression algorithms and applications
would be able to efficiently compress this
type of data.

The experimental results indicate
there is a logarithmic relationship between
the compressed file size and the measured
entropy of ciphertext files encrypted using
the selected modern symmetric-key
algorithms, proving the lemma. This
relationship was also noted in the plaintext
files used for encryption.

An unexpected finding 1is the
potential to identify the encryption
algorithm (DES, SEED, AES, etc.) using
chosen ciphertext and the amount of
compression. Small and consistent
differences are noted between different
algorithms and encryption modes. Non-
ECB modes for s returned a consistent size
of 101.98% compressed, SEED 101.05%
compressed, and AES 101.01%

compressed. An opportunity for further
research would test other algorithms and
key sizes (Triple-DES, AES-128, Blowfish,
etc.).

Further Research

Additional research opportunities
include determining if transmitted data has
byte-alignment or encoding issues that
make detection of ECB more difficult when
data is distributed across packets for
transmission. It is also possible that lossy
compression may be useful for finding
patterns that are not detected with lossless
compression. A comparison between the
two types of compression would be useful.

ACKNOWLEDGEMENTS

Capitol Technology University was
kind enough to allow the use of its campus
and facilities for this research. The late Dr.
Win Wenger provided valuable guidance
on the works of Drs. Piaget, Bruner & Kolb.
Dr. William Butler, Dr. Sandy Antunes and
Professor Frank Davis provided much
helpful input and encouragement.

REFERENCES

Bai, W., Pearson, M., Kelley, P. G, &
Mazurek, M. L. M. L. (2020, October
22). Improving non-experts’
understanding of end-to-end
encryption. EUSEC20. Retrieved
November 20, 2021, from
https://eusec20.cs.uchicago.edu/eusec
20-Bai.pdf
Balakrishnan, K. J., & Touba, N. A. (2007).
Relationship between entropy and Test
Data Compression. IEEE Transactions
on Computer-Aided Design of
Integrated Circuits and Systems, 26(2),
386-395.

https://doi.org/10.1109/tcad.2006.8826
00

Cherry, K. (2020, May 15). The David
Kolb theory of how experience
influences learning. Verywell Mind.
Retrieved March 22, 2022, from
https://www.verywellmind.com/experie
ntial-learning-2795154

De Gaspari, F., Pagnotta, D. H. G., De
Carli, L., & Mancini, L. V. (2020,
October 15). Encod: Distinguishing
compressed and encrypted File
Fragments. arxiv.org. Retrieved
October 13: 2021, from
https://arxiv.org/pdf/2010.07754.pdf

Klinc, D., Hazay. C., Jagmohan, A,
Krawczyk, H., & Rabin, T. (2009). On
compression of data encrypted with
block ciphers. 2009 Data Compression
Conference.
https://doi.org/10.1109/dcc.2009.71

Kolb, D. A., & Kolb. (1984). Experiential
learning: Experience as the source of
learning and development, 2nd edition.
Pearson. Retrieved March 20, 2022,
from
https://www.pearson.com/us/higher-
education/program/Kolb-Experiential-
Learning-Experience-as-the-Source-of-
Learning-and-Development-2nd-
Edition/PGM183903.html

Krathwohl, D. R. (2002). A revision of
Bloom's Taxonomy: An Overview.
Theory Into Practice, 41(4), 212-218.
https://doi.org/10.1207/s1543042 1tip41
04 2

Marczak, B., & Scott-Railton, J. (2021,
June 29). Move fast and roll your
own crypto: A quick look at the
confidentiality of zoom meetings. The
Citizen Lab. Retrieved December 8,
2021, from
https://citizenlab.ca/2020/04/move-

fast-roll-your-own-crypto-a-quick-
look-at-the-confidentiality-of-zoom-
meetings/

Mcleod, S. (1970, January 1). [bruner -
learning theory in education]. Simply
Psychology. Retrieved June 9, 2021,
from
https://www.simplypsychology.org/bru
ner.html

Newhouse, W., Keith, S., & Scribner, B.
(2017, August). National Initiative for
Cybersecurity Edcation NIST 800-181,
KSA K0274

Shannon, C. (n.d.). A Mathematical Theory

of Cryptography. International
Association for Cryptologic
Research. Retrieved October 10,
2021, from

https://www.iacr.org/museum/shanno
n/shannond5.pdf

