A Comprehensive Study on Code Coverage
Analysis for effective Test
Development/Enhancement Methodology

Biswadeb Bandyopadhyay
Assistant Professor, Department of Computer Applications (CA)
University of Engineering and Management, Kolkata
biswadeb.bandyopadhyay@uem.edu.in

Abstract-The paper describes a tool developed by a
team of testing practitioners dealing with a large
collection of test suites used for testing Teradata
which is large relational database system software.
This team has studied the existing database software,
available test suites, collected the code coverage data
for a large number of available test suites for Teradata
and developed an effective Web based Code coverage
analysis tool to analyze these Code coverage
performance of these test suite while running on
Teradata to be able to understand code coverage of
these test suites data in various possible dimensions.
This activity was undertaken as part of a test
engineering initiative to bring in place a set of
innovative test engineering practices as potential
business value adds.

1. Introduction

An effective way to measure the Quality of software
product is the amount of code that has been tested
(i.e. Code coverage). While this does not guarantee
that the code is defect free, the risk of uncovering
more defects from the customer’s site is reduced
considerably as more code is tested during the
product test cycle. It should be realized that even
100% coverage does not guarantee a defect free code.
Most Test engineer would agree that while one can
never be sure of a bug free code, a significant
milestone is achieved when "all the code has been
tested." Code coverage can be a valuable measure,
especially when time is taken to achieve a high
coverage value.

The idea behind the code coverage is to improve the
test cases by

e Identifying the uncovered code by the
existing test suites, adding the new test cases
and thereby improving the test suites.

e Identifying the redundant test cases in the
existing test cases, thereby reducing the
execution time of the test cases by removing
them.

While working with these test suites, the team took
an initiative to analyze the code coverage for all the
available test suites to get some degree of confidence
as to the existing level of code coverage. Code
coverage provides a deep insight into the adequacy of
the test cases and the need of or scope for
improvement. The team undertook a comprehensive
analysis of these test suites and collected code
coverage data for a large number of such test suites.
A Web based tool was developed where all these
coverage data were stored, to order to do a
comprehensive analysis of these code coverage data
in various dimensions.

The Web based code coverage analysis tool
developed by the team provided a convenient
platform from where the user can obtain and analyze
the code coverage data for various test suites. This
proved to be an effective tool to quickly understand
and analyze the test coverage scenarios.

The benefits of this tool were to be able to generate
the following analysis reports

e Line level, function level and module level code
coverage reports

e Annotated source code for function wise, module
wise and test suite wise coverage data

e Annotated source code of a selected
implementation file with lines hit, lines not hit,
lines partially hit

e Analytical report of code coverage of a selected
implementation file for various test suites

e To provide information on the most appropriate
test suites to validate a bug fix/code

e
\
¥

g

LS
el
K

enhancements which will guarantee the
maximum statement coverage of the file being
added/modified

e To analyze any field reported problems, to
identify whether the root cause of the failure was
due to non-coverage of the code segment where
the fix for the problem was found

e To identify the root cause of any regression
problems due to any limitation of existing test
suites used for regression testing

2. Why Rational’s Pure Coverage:

There are lots of profiling tools in the market. But most of
the tools do not support for server side, i.e. applications that
will run continuously. They will generate coverage data
only on graceful exit of the application. But Rational's
Visual Purecoverage tool generates a detailed report of the
code coverage, even the application terminates abnormally.

There two flavors of Purecoverage packages from Rational,
one is on UNIX and another for Windows. On UNIX, it is
necessary to instrument (adding Purecov option) at the time
of compilation itself. So it would necessitate to re-build the
package. But on NT we can instrument after the
compilation, so there is no need to re-build the package. It
is also possible to instrument any particular EXE/DLL that
may be neede. But these should be built without any
optimization options.

It is possible to save the coverage data of Purecoverage
either in CFY format (only Purecoverage can open) or in
ASCII Text format.

3. Implementation

Following section describes development of a code
coverage analysis tool by a team of test practitioners who
were involved in the development of test suites for testing a
large relational database management system. The team
utilized its experience of developing these test suites to
extend it further to assess effectiveness of these test suites
in terms of code coverage performance of these tests on the
system under test. Essential idea was to develop such a
code coverage analysis tool and utilize this tool in
analyzing the test suites being developed, use that
information for rationalizing the tests by eliminating the
tests that are redundant, augmenting test suites with new
test cases to improve the code coverage further, thereby
enhancing the effectiveness of the test suites.

The test team developed a web based “Code Coverage
Analysis tool” that provides a convenient platform from
which the user can obtain and analyze the code coverage
data for various Teradata Regression Test Suites. This data
was collected using Rational’s Purecoverage tool. The
Code Coverage Analysis Tool provides all information
such as percentage of DBS code coverage for different

regression test suites, at module level, function level and
line level. This provides complete information about
overall code coverage performance of each individual test
suites as a whole.

3.1 Minimum Cost — Maximum
Coverage Model

To implement Minimum Cost - Maximum Coverage
model for rationalizing Test suites and enhancing
Code Coverage.

Cost parameters for optimization:

e Line Coverage (Ci)
e Number of Test Suites (Ti)
e Execution Time (Ri)

Min Cost —Max Coverage Model optimizes:
Min (Ti)=Max (Ci) & Min (Ri)

e Track the line coverage and
minimize overlap across the tests

e Minimal test sets to cover
Maximum source code

3.2 Tool is used by the Developers

e To identify the areas of code which are not
covered or partially covered in order to
improve the test cases

e To use the tool as a workbench for ensuring
that the test cases they generate are adequate

3.3 Tool is used by the Testers

e To choose the Test Suites based
on their percentage of coverage
fora

e given source file

e To Correlate the Test Suites for
their coverage for a given source
file

3.4 Features of the Tool

Tool was built around Java Servlets, Java Server
Pages, HTML, Apache Web Server, Jakarta-Tomcat,
Carcase Version Control Software, Rational Pure
Coverage Tool, Unix Shell scripts and Teradata
RDBMS.

Feature includes:

- Data extraction

- Data loading

- Report generation with Code Coverage Analysis

- using HTML / Java Servlets / Apache Web Server /
Jakarta-Tomcat / Teradata ODBC driver/ JDBC-

ODBC bridge

Tool generates following reports:

- Correlating different Test Suites for Line-wise
coverage for a given source file
- Function-wise coverage for different Test Suites for
a given source file
- Pictorial presentation of Module-wise coverage for a
given Test

Suite

- Highlighting source file for coverage data with
annotations

e Blue indicating covered lines

e Red indicating uncovered lines

e Pink indicating partially covered lines

e Showing list of Test Suites
in ascending order of coverage for a given
source file

Regression Test Set Optimizer

Esteption |Code Coverage

-

2 o Jain e TNT Server

I: -~

g g

2 H

= £

£ 5

5 . g3

4 Data PURECOV £

f, Loader > £ 4

3 — £ HQ
—> 2 =

ot

: i

S :

% Code E =

5 Coverage % 1

L4 Web Server Database £

H A

*

= N J

e

Figure 1 - Regression Test Set Optimizer

Coverage Tool - Micrasoft Intemet Explorer provided by MSN

Jf\\e Edt View Favortes Took Help

|&. 2.0 B 4

| Back i Slop FRehesh Home
! Address iﬂ hitp: #loc alhost 8080/ cot/codestart himl

TERADATA CODECOVERAGE

e

Seach Favoites Histoy

B g ©

Wal Pt Edt Redeon

=] b0 Lk

Inlrodnetion Line Level Report

Code Coverage Function Level Report

Training Graphs: Module Level
Highlight Lines Covered by a Test Suite
DEGRECIEE TP)0 Test Suites in the Order of Coverage
Data | oading..
Execute Test
Suite
2] [5% Locdingaret 7

Figure 2 - Teradata Code Coverage Tool

/3 Code Coverage Tool - Microsoft Intemet Explorer provided by MSN [_[o]x]

]f\\e Edt Vew Foverles Took Hep

| Back © Sop Peheh Home
| Aeress 2] g alost 8080/ cotcadestar il

TERADATA CODECOVERAGE

9 333 Jou

Search Favoites History Mail Print Edit Realcom

=] @Bo |[Liks®

Introduction 3 .
Line-wise Code Coverage
Code Coverage

el Module [-SELECT- =]
Data Processing... [iIVEERT ;ﬁELECT*
Data Loading.. [File
Reports
Select the Tes

Execute Test
Suite

SUBMIT

& Done || [Localinyaret 7

Figure 3 - Line Wise Code Coverage Menu

*
Rk x,

=3
Y

G
Qe

X

R&

Code Coverage Too

€6 Vew Fuole Tk Hob

S .0 [Al A &S
crzi Skp Fchesh

Home | Seach Feroibes Hislory

]

Introduction

Code Coverage
Training

Data Processing..
Data Loading.
Reports

Execute Test
2

Inoduction ; & im 3
— Function-wise Code Coverage
Cade Covarnge
Trmining Modie [par -
Date Pracessing... [NENSYRNES vy 5

File Paee: o]

Seleet the Test Subte wasme(s)

Figure 5 - Function Wise Code Coverage Menu

de Coverage Taol - Microsoft Intemet Explorer pr

J Fie Edit View Favoilss Tooks Help

S A R | \ 3 | B .
Back Fomyard. Stop Refiesh Home Search Favortes History Mail Prirt Edit Realcom
| Address [#] hip:/ localhost 808 cet/codestart himl =] @G0 “Links 3

TERADATA CODECOVERAGE

Introduction

ardtree.c
(OIS NCOPN (Function | Total Lines|QLNT
Teaining [Findspmbol 13 B
Data Processing... [Ea0itd 14 13
: [tsReserved
Data Loading.. I
[pardiree
Beperts [scan
Execute Test [Stan_Wlth_Parens
Sulte Stick
StickByte
StickData 172 141
[stickDataDesc [254 141 |
[snckEet 10 8
[sticlcList 128 o5
[stiokeMas 21 20
[stickModTa 93 19
[Stickum 14 12
R o o =
|&] Dore [[%% Losalinanet 7

Figure 6 - Function Wise Code Coverage Output

| Ble Edt Viw Favies Tods Hop |
S < R |
Back Sip Fchesh Home
| Address [#] htp: 0calhost 8080 /oot codestart pirl

Search Favorkes Hmmy‘ Mal P Edi Redeom

=1 5o || Links >

Introduction

Code Coverage
T

Data Processing...
Data L oading..

Reports

Execute Test
Sui

|| [5% Localintranet 7

Suite Wise Coverage Menu

N
e

N

X

wvstage Tool - Miciosoll Intemet Explores o

fle Edt Vew fgwies Jook Heb n
s TR - ST T 2 S T
Back Sl Rebosh Home Seach Fovodes Hidoy | Mal Pl Edl Reacom
et [£] e/ ocaihost BB oo codestart himl =] o6 |[Lnks
TERAD/ “ODEC!
Qlnt
HCOVERED
[—
@
0
) I. i.ll
/mBNERNEN
AMP4PARE DISt AMPL DBSL FILL SES1 PaRI
] Do el Local inianel 7

Figure 8 - Coverage Output of a particular Test
Suite

#.% @ 3 Ala & 3B g w.
| ok Sen ebeh Mome | Sewch Foses Ny | Gw P E@ Resom
Agmi) iy oot 9L co/codedan frd it e
TERADATA CODECOVERAGE
Highlight Lines Covered by a Test Suite
ade Coverags
Luaining Modds | <
Data Processing.. SubMod
Data Loading.,
Select the Test Site namels)
SUBMT
B lone [el vt 2

Figure 9 — Highlight Lines Covered by a Source
File Menu

Faveites Jools Heb
@D & .
S Relesh Wow Sewch Fowbs Wamy | WA P B Reseom
T | ST ——

Data Loading.,
Repans

Execute Test

amroperatiin &

cylpacan ©

Figure 10 - Annotated Source Code of a File

| B E# Yew Favous ok hep =2

| ;:k

% . D dla @I (D F TP

So Pafeh fiee | Sewch Fwews Wy | WM P Ear Reen

| g [. o 080 et et it

Introdution

Data Ls

Repons

Suite

1 Dere

pading..

/% Scan DEDS from end of Cylinder back to DBD arter
carget DED '/
for (1 = 1 - c1_p-ohdr.refoount; i < ctx p->f.ci.dbdindes; 1++)

abd_p = EILDBD Pici_p, ciref p. i}:
Torwanted += dbd_p-rsects:

]

forneeded = forwanted:

forek = TRUE:

if (1fornewcyl) il
woto chkeid:

elae

/% prict wigrate forvard call returned ERRYILNCHEMOVED +/

gots migrave:

7+ DEKOPSINGLEROU or DBECPSTNGLEAPPEND o
" o
/% backcount - winimun muber of DBs which weed to be moved to "
/* #ree up sectaneedsd sectors srarting st firse DB on this "
/7 cylindec and comtinuing ¥p to but ot including the cucreat DB. */
/% backek is sec TRUE if all such DB have heen scanned o
/7 and AT leadr asctoneced SSCTOTI BAVE DASH ATTAIned. "
/7 1f backcount reaches maxdbstomove, howsver mny sectors that %/
/* heve been attained is asceptable and backsk is ser TRUE. 7
/7 If backok is FALIE, oo hackvard sove can be pecfocmwed. 2
’ s
‘“ s wmDer of DI Bonesd o be

5 o o

nt._lmnt 1A o

I Tig Loca rhares

Figure 11 - Line Wise Coverage Output of a Source

File

TERADATA DBS CODECOVERAGE

40
35

|
J

B % of Functions
0% of Lines

Test Suite

Figure 12 - Test Suite Wise Code Coverage Output

7. Code coverage analysis in practice for large

3 Code Coverage Toa - Micorat niomet Expes proided by WSk systems, Yoram Adler; Noam Behar; Orna

e . . =] Raz; Onn Shehory; Nadav ~ Steindler; Shmuel
&=+ Q@ A4 D A I E - A . . .

'..,iigwwizw,::m:“ Seach Favles_ iy E5_ Fedon Ur; Aviad Zlotnick, 2011 33rd International
— Conference on Software Engineering (ICSE)

8. A REVIEW ON CODE COVERAGE

ANALYSIS SARITA PATHY1 P.G. Dept. Of

gL
il
¥

Introduction

et
Code Coverage for (i =1 - ci_p->hir.refeount; i < ctx p->f.ci.dbdindex; i++)

Training IR Computer Science and Application Jyoti Vihar,
ma_ focrontod o i n Taera: PP

:‘ : p L uea - toreamtees Sambalpur University, Burla,
Dats Loading.. IO it . .

. Ferralini Y 1 Sambalpur,Odisha,India

R gots enveia:

else
Execute Test

£vard call returned ERRFILNONEMOVED =/
Suite

DEROPSINGLERGH or DEROPSINGLEAPFEND

nt - minimum number of DBs which need to be moved to

e up sectspeeded sectors starting at first DB on this ¢

inder and continuing up £o but mot including the current DE. ¥/
A

E]Done.

Figure 13 - Annotated Source Code of a File

4. Conclusion

Tool developed by the turned out to be quite
effective in performing a number of activities.
These included, Rationalizing the Test Suites,
Generating Traceability Matrix, Improving
Percentage of Code Coverage, Analysis of field
encountered problems, to identify the root cause
of any regression problems, due to any limitation
of existing test suites used for regression testing,
non-coverage of the code segment where the fix
for a particular problem was found. The tool is
unique in the sense that it focuses on optimizing
the test suites from code coverage perspective of
test suites, providing dual benefits
simultaneously by improving code coverage and
optimizing the test cases, which in turn results in
reduction of test cycle time.

References

1. Effective Methods for Software Testing, William
E. Perry, Willey Publication

2. Software Engineering: A Practitioner's Approach,
Roger S. Pressman

3. Software Testing Concepts and Tools, Nageswara
Rao Pusuluri

4. Software Testing in Real Worls, Edward Kit

Code Coverage vs Test Coverage: A Detailed

Guide, Shreya Bose

6. Efficient use of code coverage in large-scale
software development, Yong Woo Kim,
CASCON '03: Proceedings of the 2003
conference of the Centre for Advanced Studies
on Collaborative research

W

