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Abstract- Clustering time-series values is an established
technique for organizations employing machine learning to
analyze temporal datasets. Generally speaking, the goal of
time-series methodology is to generate predictions. Such
predictions could help organizations understand potential
future cyberattacks, financial market changes, weather, or
disease outbreaks. However, computational limitations lead
existing algorithms to fail to group individual series together
based the actual behavior of the series. A feature that can be
used or derived to explain the time-series behavior had not
been identified in the literature despite there being a need to
have numeric values to describe the pattern of values over
time. To address this gap, this work presents a behavior
algorithm which addresses clustering time-series data based
solely on the behavior of the series. Further, the algorithm is
designed to operate effectively regardless of absolute values
or temporal shifts. First, we describe the algorithm through
mathematical examples. We provide the design approach for
the algorithm numerically and through data visualizations.
Then, we validated the algorithm on sample random data.
Finally, we offer conclusions along with notions for future
work based on this study.
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1. INTRODUCTION

A variety of industries such as cybersecurity [1],
human performance [2], finance [3], and medicine [4]
leverage time series analysis. The essential purpose of
employing any form of time-series methodology is to
mine a prediction out of a diverse dataset. These
predictions have great value to society: cyberattacks,
financial market predictions, weather forecasting, and
disease outbreak management to mention a few timely
examples. Given the social impact of time-series
analysis, the value to science and technology is in the
creation, implementation, and optimization of these
algorithms[5].

A fundamental approach to analyzing such data is
clustering [6], especially in the context of temporal
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data. However,existing algorithms for analyzing time-
series data fail to quantify and visualize how different
series compare basedon temporal fluctuations [7, 8, 9].
Granted, fluctuations occur in most data samples and
are unavoidable [10, 11]. Yet,this leaves a gap in which
clustering categorical data by behavioral patterns is
computationally expensive and does not provide
insight beyond how a single series of data is related to
another from a time-series perspective (e.g., a series that
has high fluctuation or variation versus low).

This problem is significant to future forecasting efforts
because such patterns aid in deeper understanding of
the data, unforeseen similarities and differences across
the dataset, clustering data points in a new dimension,
and computational time savings when comparing time
series data. Accordingly, this work addresses the lack
of behaviorally adjusted time-series models by first
identifying numeric features representing the behavior
of the series. We then describe a novel algorithm aimed
at improving the way time-series clustering and
classification is conducted.

It is necessary to first establish the foundation related
to this work. The next section offers a robust
background of literature associated with time-series
analysis. Particular areas of focus include research
problems, the solutions offered throughout the history
of the field, as well as synthesis of features across the
research base important to the novel algorithm
proposed in this study.

2. RELATED WORK

Time-series clustering is not new. Organizations base
forecasting on time-series data through trend and
seasonality to compute values such as rolling forecasts
[12]. Standard forecasting techniques include analysis
of trend and seasonality [13]. This approach is used to
analyze a series and make predictions but does not
provide a way to compare two series. For example,
looking at a customer’s expenditure and predicting
their expenditures for the following year, or by
grouping all customers together for a given country
and predicting the following year. This led to the
creation of other approaches with the goal of clustering
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time-series data. While many approaches currently
exist in modeling and working with time-series data, a
clustering method that looks at behavior did not [7, 8,
9,14, 15, 16].

This section explores the conceptual framework of
time-series analyzes. The conceptual framework
emphasizes the strengths of four approaches
representing the state of the art in terms of time-series
clustering. To that end, Aghabozorgi, Seyed, and Wah
[17] gathered time-series approaches that were used in
the last decade. The authors identified the most
common approaches as The Hausdorff distance,
HMM-based distance, Dynamic Time Warping
(DTW), Euclidean distance, short times series distance,
and Longest Common Sub-Sequence (LCS).

In general, clustering techniques measure similarity of
some sort and those which are closer in some space (i.e.,
a plane or vector) are more similar [18]. Each of the
following algorithms also aim to measure similarity
through distance, however with different approaches.
Using distance as an approach does have success but
exhibit exponential time complexity and thus
increasing computational expense. This is due to the
fundamental approach in how distance is measured.

First, all series have x amount of data points, where x is
the number of values in the data set for a single series.
Then, every series is measured against every other
series. The output is a specific series or ID and a list of
all other series or IDs that are similar based on
proximity by measuring the distance. For instance, if a
data set has ten different time-series, each with ten
different time points with a corresponding value, all
time-series clustering algorithms would take every
series and measure the distance for use as a central
vector for clustering. A trivial amount of data is not a
problem; however, in real world applications the data
set will become too large, rendering this approach
infeasible. Additionally,this does not include the issue
of the finding similar behavior between series’,
regardless of the values.

2.1 Euclidean Distance

Euclidean distance has high accuracy as it measures
the distance between all the wvalues [19]. Two
limitations of this algorithm is that values need to be the
same length (i.e., same dimensions) and the series need
to be aligned temporally [17]. For example, imagine
two customers spending money every month for one
year. Measuring the Euclidean distance between the
two would compare January to January, February to
February, March to March, so on and so forth. This is
okay if the goal is to compare expenditure with a fixed
time variable. However, if the patterns were similar
regardless of when expenditures happened, this
approach wouldn’t work. Put simply, calculating the
Euclidean distance excels in finding series that have
the same pattern at the same time points, when peaks
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and valleys happen at the same timestamps [14]. In
contrast, when the series have non-matching
fluctuations and do not match, it is very likely that their
scores will indicate no similarity.

2.2 Dynamic Time Warping

DTW is an approach to taking time-series and finding
similarities as opposed to identical time alignments as
seen with Euclidean distance [20]. DTW was first
created to identify similar sounds waves where high
accuracy was important in trade-off of high time
complexity [21]. Similar, non-music based problems
can be handled by DTW as the algorithm deals well
with time-series clustering in the face of temporal
shifts [17] and works well on small data sets. However,
the algorithm is limited by its space and time
complexities [22, 23]. The reason behind the extensive
computation is that every timestamp in the series has
the difference measured with every timestamp of every
other series. Different DTW approaches have been
researched to overcome the challenge of computational
limitations on large data sets [20]. Finally, DTW
requires all series in the data set to be of equal sample
size [17]. Consequently, when an exact match is not as
vital based on the data set the computation limitations
may not be worth the output or feasible depending on
the application. Improvements have been made to
reduce the time complexity, such as Mini-DTW, which
aims to summarize a dataset so that it isn’t as large
[23]. However, this doesn’t solve the gap of find
similar patterns across different time-series without
comparison.

Short Time-Series

The short time-series distance approach to clustering
accounts for shorter temporal lengths in the data [17,
18]. This time-series algorithm clusters exact behaviors
based on the time-series shape [24]. Such an approach
is limited to clustering short time-series and exhibiting
the same patterns [14]. Furthermore, short time-series
cannot group different patterns together exhibiting the
same behavior or fluctuations [17, 18]. At the same
time, short time-series is resilient toabsolute values and
will not skew the data behavior if such are included in
the input.

Level Shift Detection

Level Shift Detection (LSD) is an established time-
series algorithm applicable to datasets containing a
nontrivial quantity of outliers and anomalies [25]. LSD
is applied in one of two forms: specific frequencies of
patterns greater than a threshold or to find when the
average over time changes in different segments of the
series [26]. Similar seriescan be clustered by counting
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the number of occurrences for specific patterns [17,
14]. When looking at the second application where
averages in certain windows change, LSD aims to
measure how a series adjusts over time [27], not
necessarily to cluster similar series together.

3. THE BEHAVIOR ALGORITHM

Current approaches to clustering focus on absolute
values, which group series together where values are
more similar [17]. These clustering mechanisms ignore
the behavior of the series. Thus, the first step in using
the behavior algorithm is to compute the sum of
absolute difference and sum of series approach, after
the data is normalized. It should be noted that using
absolute values could cause large differences in
distance measures depending on the variation of values
that lie in the data set. Normalizing the data could find
similarities of behavior by taking the effects of
absolute values out of the equation regardless of the
algorithm used. This was also demonstrated by [28]
where taking the Euclidean distance of normalized data
outperforms other algorithms and itself on absolute
values.

The following (Figure 1) is an example of how absolute
values and some standard descriptive statistics fail to
identify patterns in time-series data. Series A has a
value of 48,000 once, while series B has a value of
4,000 twelve times. The series averages and totals
would be equal except the behavior was different
between series A and B. The failure to identify patterns
is caused by calculating the average and total amount
and using them as metrics for distinction. It is not
possible to conclude a difference in the behavior with
such statistics.

Time-series Behavior

Figure 1: The discrepancy based on fluctuation behavior in
time-series data

Standard deviation and the variance outline the
fluctuation behavior in the time-series behavior (Table
1). However, if standard deviation and variance can
identify changes in the series behavior, then a new
algorithm is not needed to group similar customers.

Importantly, standard deviation and variance do not
account for significantly different absolute values.

Table 1: Time-Series Descriptive Statistics

Series A Series B
Example 48,000 x 1 4,000x 12
Average 4,000 4,000
Total 48,000 48,000
Std Dev 13,856 0
Variation 192,000,000 0

To extend the previous example demonstrating why
absolute values will inaccurately handle fluctuation
behaviors, wecan visualize Series A with a value of
48,000 once compared to Series C with a value of
15,000,000 once (Figure 2). This example
demonstrates two series where the behavior is the same
but the standard deviation and variance are different.
The visualization also shows behavior that is not easy
to distinguish when plotted on the same graph with
absolute values.

Time-series Behavior
16000000

14000000

12000000

Serles A Series C

Figure 2: Visualizing hard to distinguish time-series behavior

Table 2: Descriptive Statistics for Two-Series Behavior

Series A Series C
Example 48,000 once 15,000,000 once
Average 4,000 1,250,000
Total 48,000 15,000,000
Std Dev 13,856 4,145,781
Variation 192,000,000 17,187,500,000,000

Based on the absolute values, series A and B had more
in common because the average and total were the
same. However, the actual behaviors of series A and C
were more alike. Accordingly, the behavior algorithm
must handle this discrepancy by normalizing the data
first either by computing the traditional normalization
technique or standardscore (z-score). Further, absolute
values make it difficult to group data elements based on
their behavior which must beaccounted algorithmically.



For clarity, we take normalization to be a process of
converting all values in a data list to values between
zero and one. The normalization equation can be
expressed as:

Ni = (Xi - Xmin)/(xmax - Xmin) (1)

The z-score is a way to determine how many standard
deviations (o) a specific data point is from the mean of
the dataset. The standardization (z-score) equation can
be expressed as:

Zi = (Xi—, )/O' (2)

Table 3: Descriptive Statistics for Temporal Shifts

Series A Series B

Actual Normalized Z-Score Actual Normalized Z-Score
Sum of Series 21.00 1.00 0.00 111.00 1.00 0.00
STD 249 0.28 1.00 27.36 0.28 1.00
VAR 6.19 0.08 1.00 748.69 0.08 1.00
Mean 1.75 0.08 0.00 9.25 0.08 0.00
Median 1.00 0.00 -0.30 1.00 0.00 -0.30
Sum of Abs Diff  9.00 1.00 3.62 99.00 1.00 3.62

To account for the issue where the standard deviation is
zero (o = 0), the z-score equation can be modified to
include epsilon (€). Epsilon is a very small constant,
much smaller than any meaningful standard deviation,
to avoid a division by zero error. The modified
standardization (z-score) with epsilon equation can be
expressed as:

Z = (X;—, )/(o+e€) 3)

Using either approach places every data element on the
same scale. Notably, the € modified approach handled
a large difference in the total amount between series
leading to concomitant difference in the standard

and acts a key step in the behavior algorithm’s
computation of the sum of absolute difference and sum
of the series.

Series A and B é};able 3) both have values of one for
eleven out of thklve timestamps. Series A has one
value of ten whereas series B has one value of one
hundred. The behavior is the identical. However,
looking at the standard statistics, it is difficult to find
the similarity. The sum of absolute difference and sum
of series of the z-scores and normalizationare the same
for both series. Variance and standard deviation on the
normalized data also appear to correctly identify the
similarity in the pattern.

Table 4: Descriptive Statistics for Uneven Series Data

Series C Series D

Actual Normalized Z-Score  Actual Normalized Z-Score
Sum of Series  120.00 12.00 0.00 1200.00 12.00 0.00
STD 0.00 0.00 0.00 0.00 0.00 0.00
VAR 0.00 0.00 0.00 0.00 0.00 0.00
Mean 10.00 1.00 0.00 100.00 1.00 0.00
Median 10.00 1.00 0.00 100.00 1.00 0.00
Sum of Abs Diff  0.00 11.00 0.00 0.00 11.00 0.00

Series C and D (Table 4) both have the same values for
every point out of twelve in their respective series.
Series C hastwelve values of ten whereas series D has
twelve values of one hundred. The behavior is the
same, however looking at the standard statistics, the
similarity is obscured. The sum of absolute difference
and sum of series of the z-scores and normalization are
the same for both series. Variance and standard
deviation on the normalized data also appear to
correctly identify the similarity in the pattern.

Table 5: Descriptive Statistics for Dissimlar Time-Series

deviation and variances. Such large differences render it Benes ¥
A N oo 8 ’ . Actual Normalized Z-Score Actual Normalized Z-Score
clustering difficult, if not impossible. This becomes SumSU'lf"{S}eﬁes 418%) g.gcl) ?$ 2;01.20 g.g? ?%
more evident When all threg-senes are plotted with VAR i e Toi e 17 100
standard normalized values (Figure 3). Mean 4.00 0.50 000 2000 0.50 0.00
Median 400 0.50 000 2000 0.50 0.00
Sum of Abs Diff ~ 30.00 7.50 1837 15000  7.50 18.37

Time-series Behavior

Series E and F (Table 5) fluctuate between three

05 different values. Both have each value appear four
o different times in a specific order following the pattern

03 123123123123, The behavior is the same, however
° looking at the standard statistics, it is again difficult to
) find the similarity. The sum of absolute difference and
P e oo sum of series of the z-scores and normalization are the
same for both series. Variance and standard deviation
on the normalized data also appear tocorrectly identify
the similarity in the pattern.

Figure 3: Visualizing clustering difficulties with three-series

normalized values. To demonstrate that sum of absolute difference and

sum of series do not just consider the values at the time
points, whether absolute or normalized, another
example is provided (Table 6). Series G and H are two
series which have thesame values but were recorded in
a different pattern.

Series A and C are shifted to different time points for
visibility but otherwise are identical. This data
illustrates the twochallenges of (a) identifying a way to
handle the behavior of series regardless of absolute
value; (b) and the difference of time (i.e., temporal
shifts) serving as a confounding factor. Visually, we
can see that normalization accounts for absolute values



Table 6: Descriptive Statistics for Pattern Variance in Time-Series

Series G Series H

Actwal Normalized Z-Score  Actual Normalized Z-Score
Sum of Series 90.00 6.00 0.00 90.00 6.00 0.00
STD 2.50 0.50 1.00 2.50 0.50 1.00
VAR 6.25 0.25 1.00 6.25 0.25 1.00
Mean 7.50 0.50 0.00 1.50 0.50 0.00
Median 7.50 0.50 0.00 1.50 0.50 0.00
Sum of Abs Diff  55.00 11.00 22.00 5.00 1.00 2.00

Series G and H have the same values yet the pattern is
different. Series G alternates between two values for
every timestamp, whereas H has the same value for the
first six timestamps. Then, Series H changes to a
different value for the following six measures. Thus,
the behavior is different. Standard statistics, such as
standard deviation, variance, mean, and median, are
identical. The sum of absolute difference of the z-
scores and standard normalization express numerically
the behavior is in fact different. However, the sum of
series is the same for both as it does not account for the
order of which the expenditure happened. The standard
deviation and variance also identified similarity in
patterns. Notably, when applied to a larger sample size,
limitations start to arise.

To that end, Figure 4 visualizes the different data for
series A (i.e., original, normalized, and z-score). A key
takeaway from the visualization is the behavior of the
series 1is still intact. These results point towards
normalization being necessary either through
traditional normalization or computing the z-score as
the new scores do not alter the behaviorof the series.

4. DISCUSSION

The z-score provides a type of normalization as well. A
strength of the z-score is the sum of absolute difference
adequately finds similarities in series where behaviors
were identical. On the other hand, a limitation is
summing the computed z-score (i.e., computing the
sum of series), produces a total which is always zero
due to the negative numbers. Therefore, the sum of
series does not provide any level of distinction in those
values. The standard deviationand variance calculated
on the z-scores computed to one for every element,
with a mean of zero. With variance and
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Figure 4: Visualizaing normalization of time-series data for
time-series integrity.

standard deviation identified as attributes changing with
high fluctuation in behavior, the z-score variance and
standarddeviation lose their meaning.

The standard normalization’s sum of absolute
difference and sum of series also adequately compute
scores that are reflective of their behavior and not
absolute values. The additional benefit is that the sum of
series also provides a level of distinction between
different behaviors and a score that is the same for
identical behaviors. The mean and median provide
some insight as they also identify similarity in the
behavior. These values could also match when
behavior is significantly different due to how they are
computed. Standard deviation and variance also
provide a level of distinction between the different
series in the fictional data set.

This highlights the importance of normalizing the data
to find similarities in behavior. Normalizing the z-
scores does turn the data into the exact values that
normalizing the total amounts gets without the extra
calculation of computing the average, standard
deviation, to then compute the z-score so that it can be
normalized to get the same results. It is recommended
to normalize the actual values as the principle of
parsimony dictates that the simpler model should be
chosen when there is little benefit to the more complex
one. In this case the outputs derived are exactly equal,
thereforeforgoing the extra steps is best practice.

Furthermore, not only does the sum of absolute
difference help prepare the series data to be clustered
based on similarity, the values are interpretable. A
value of zero, or close to zero, will occur when all
values are the same or if the series has a small sample.
A value of one suggests all the values were the same
except for one. This can occur for any length of time-
series. For example, a series with two data points will
equal one as well as a series with three data points
where two are the same value. When values are greater
than one, the larger the sum of absolute difference, the
closer the data points are together in the series. Series
E and F demonstrate this point. The smaller the sum of
absolute difference, the larger the gap the between the
highest value and the rest. Series A and B demonstrate
this point. Depending on the pattern, the sum of
absolute difference can identify a specific behavior that
the sum of series cannot. The sum of absolute
difference unique example demonstrates this point
(Figure 5).
Sum of Absoute Difference Unique Example
12

m— Serieg G Series H
1 2 3 4 5 3 7 B L 10 11

Figure 5: Visualizing patterns of specific behaviors based on
absolute difference.
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Here, Series G and H would have a sum of series value
of six where no distinction could be made, whereas the
sum of absolute difference would be one for series H
and eleven for series G. Understanding this upfront can
help determinewhich value is important to use and what
the interpretation implies. The sum of series provides
similar insight, howeverone aspect differs from sum of
absolute difference. The sum of series exhibits the same
behavior at both the minimum and maximum values
(i.e., a drastic incline or decline). The values towards
the middle exhibit a more regular behavior. The lower
the sum, the more variation the series has while the
higher the sum, the lower the variation until it reverses
back to more variation (Figure 6).

Sum of Series Unique Example
12

e A5 | w— G125 |

Figure 6: Visualizing variation in time-series with fluctuation
behaviors.

The sum of absolute difference in both series would be
the same- one- whereas the sum of series would be
higher forseries J and lower for series I. Series I would
have a sum of series value of 1 and series J would have
a sum of series value of eleven.

4.1 Interval Selection

Feature engineering is a key step to optimize time-
series output for interpretability. To that end, a data
preprocessing step can help regardless of the absolute
values. The feature is interval selection. Depending on
the appropriate choice,data then needs to be aggregated
for that interval. For example, if daily data is available,
but the desired interval is monthly, then the daily data
must be summed for monthly aggregation. Selecting the
appropriate period for analysis is critical. The
aggregation period is relative to the application, but is
nonetheless necessary. Figure 7 demonstrates data
aggregation depending on the period selected. The time
in the example is in calendar days.

Monthly
150000

Daily
10000 100000 f\/\_\/
5000 50000
0

0

HOOOM~NOINSTMMNEEOO
MO OIERNERANS 1 3 5 7 9 11
Figure 8 Daily nrerval Figure 9 Monthly Interval
Quarterly Yearly
4000000 6000000
3000000 4000000 '
2000000
1000000 2000000
0 0
1234 0 1

Figure 10 Quarterly Interval Figure 1 Yearly lntérval

Figure 7: Visualizing periodized data aggregation in time-
series data.

Selecting the appropriate interval eliminates
fluctuations while keeping the essence of the behavior.
Looking at a dailyinterval may show a high fluctuation.
Relatedly, the daily interval renders it difficult to
interpret if the time-series is too long. Quarterly and
yearly provide too little data points to fully capture the
essence of the behavior. The patterns tend to appear
similar with too much aggregation. Based on this
example, the monthly interval gives the best
description of behavior.

Further, the sum of absolute difference and sum of
series will reveal patterns in the data. Thus, it is
preferable to havetoo many data points rather than too
few. For example, daily and monthly (Figure 7) have
similarities based on the output while the pattern is
difficult to see in daily visualizations. If the time points
measured are less (e.g., quarterly and yearly), then the
scores show similarities between different series that
may not be present when visualized monthly. Of note,
data over a longitudinal period (e.g., ten years) could
yield deeper insight whereas monthly may be too
noisy. This highlights the importance of selecting the
correct interval based on the application.

4.2 Rounding

Rounding is another way to optimize time-series
output. Similar items will still be clustered together
based on the score, however rounding allows for a
smoothness of the series and leads to more rigid
values. In this way, the fluctuation evolves towards a
more fluid pattern. To demonstrate (Figure 8), given
twelve values between 1000 and 1005, the data were
rounded to the nearest thousand. Doing so achieves the
goal to smooth fluctuations in relatively similar values.




Rounding Effects

/"\,\/\/

Figure 8: Visualization of smoothed time-series outputs.

Given the data set, when rounded to the nearest hundred
and thousand the results are similar and does not add
any level smoothness to the series. When rounding to
the nearest ten thousand though, the variation becomes
much less and causes the series to exhibit less
fluctuation. This step can provide more robustness over
the model to aid in visualizing patterns but must be
completed with caution.

Rounding can cause time-series data, intended to be
separated, to have similar scores. A sound approach
then is rounding to specific places based on data
features (e.g., rounding to the nearest ten for car
speeds, hundred for plane speeds, and thousands for
rocket speeds). As well, for clarity- rounding aids with
visualization. Rounding is not necessary in computing
the sum of absolute difference of sum of series.

5. CONCLUSION

Time-series analysis is a critical tool in a variety of
industries. The chief use of time-series in these
industries is to compute predictions based on a
historical dataset. Such predictive capacity gives
society the ability to predict diverse events such as
cyberattacks, financial market changes, weather
forecasting, and disease outbreaks. Further, clustering
is heavily employed to aid in time-series data analysis,
particularly when the data have a temporal attribute.
However, existing algorithms for analyzing time-series
data fail to quantify and visualize how different series
compare based on temporal fluctuations [7, 8, 9]. Thus,
a gap exists because clustering categorical data by
behavioral patterns is computationally expensive and
does not provide insight beyond how a single series of
data is related to another from a time-series perspective
(e.g., a series that has high fluctuation or variation
versus low).

Identifying a new way to cluster time-series data was
motivated by a need to overcome the existing, limited
approaches. This included the creation of the behavior
algorithm which computes the sum of absolute
difference and sum of series features. Overall, the
behavior algorithm demonstrates one potential solution
to the research problem.

[3]

More specifically, the comparison of the absolute,
normalized, and z-score values combined with
computing the traditional statistics, sum of absolute
difference, and sum of series, identified which values
appropriately quantify the behavior of the series.
Further, the sum of absolute difference and sum of
series of the normalized data was able to distinguish
the difference of data, even given the changes in
absolute values. In this way, the sum of absolute
difference and sum of series values overcome
limitations in time-series clustering.

Lastly, providing a single value describing the behavior
of the series and improving the computational
complexity by eliminating the need to measure every
data point (i.e., DTW), or by finding the difference
between every time point in one series compared to
another (i.e., Euclidean distance). Now with one value,
clustering can be done in a fraction ofthe time, with
very reliable results. This is achieved by computing the
sum of absolute difference and sum of series forevery
series, and then either clustering all series together or
using the values for classification using machine
learningalgorithms.

With respect to future work, we first suggest work be
done to produce an operational prototype
implementing the time-series behavior algorithm. Of
course, validation experiments would be necessary to
quantify efficacy of the approach. Additional work then
could be done to implement the behavior algorithm in a
machine learning pipeline. Ex- perimentation in this
area could develop a robust basis for understanding
appropriate and inappropriate implementations across
types of classifiers (i.e., supervised versus
unsupervised). Finally, future work may be of interest
in computational optimizing of behavior algorithm.
Again, experimentation may reveal space and time
complexity optimization with generalizability across
types of time-series data.
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