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ABSTRACT  Hybrid codes simultaneously encode both 

quantum and classical information, allowing for the 
transmission of both across a quan- tum channel. We construct 
a family of nonbinary error-detecting hybrid stabilizer codes 
that can detect one error while also encod- ing a single classical 
bit over the residue class rings Zq inspired by constructions of 
nonbinary non-additive codes. 
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1. INTRODUCTION 
Hybrid codes allow for the simultaneous transmission of 

both quantum and classical information across a quantum 
channel. While it has long been known that simultaneous 
transmission can provide an advantage over the time-sharing of 
the channel for certain small error rates, see [4], most of the 
early work on the topic focused on information-theoretic 
results, see [7, 8, 25], while the problem of constructing finite-
length hybrid codes remained largely overlooked. 

The first examples of hybrid codes were given by 
Kremsky, Hsieh, and Brun [15], who introduced them as a 
generalization of entanglement-assisted stabilizer codes. Later, 
Grassl, Lu, and Zeng [5] gave multiple examples of small 
hybrid codes constructed using an approach inspired by the 
construction of nonadditive codeword stabilized quantum 
codes. Remarkably, these codes provide an advantage over 
optimal quantum codes regardless of the error rate.Recently, 
several families of hybrid codes have been constructed
including several families constructed by the authors [20] for 
the Pauli channel using stabilzer pasting and a family 
constructed by Li, Lyles, and Poon [16] for fully correlated 
quantum channels.An operator-theoretic approach to hybrid 
codes has also been put forward in [2, 3, 18]. 

In [20], the authors constructed several families of binary
hybridcodes with good parameters, including a family of [[n, n 

 3:1, 2]]2error-detecting codes where n is odd. In this paper 
we provide ageneralization of this family to hybrid stabilizer 
codes over Zq,inspired by the non-additive nonbinary quantum 
codes constructedfrom qudit graph states by Hu et al. [9] and 
Looi et al. [17], as well as the family of single error-detecting 
codes given by Smolin, Smith, and Wehner [24]. 

. 
1.1 Nonbinary Quantum Codes 

A quantum code is a subspace of a Hilbert space that allows 
for the recovery of encoded quantum information even in 
the presence of arbitrary errors on a certain number of 
physical qudits. A quantum code has parameters   n, K, d  q  
if and only if it can encode a superposition of K orthogonal 
quantum states into the Hilbert space Cq n ÷ Cqn , while 
protecting the quantum information against all errors 

ocurring on less than d physical qubits. 
Most generalizations of quantum codes from the binary 
alphabets to the case where q > 2 are constructed over the finite 
fields Fq , where q is a prime power, see [1, 10, 21]. In this 
paper, we instead follow [9, 17, 24] and construct codes over Zq 
for reasons that will become apparent in Section 2. Let a, b  Zq 
. We define the unitary operators X (a) and Z (b) on Cq as 

           
                X (a) |x  = |x + a  and Z (b) |x  = |x , 
where   
a generalization of the Pauli-X bit-flip error and the Pauli-Z phase 
error respectively. The set  forms a nice error 
basis on q see [11 13], meaning any error on a single qudit may be 
written as a linear combination of elements from Additionally, any 
error on may be written as a linear combination of errors from 

n= ={E1  E2 En|Ek By correcting errors from 
n we are able to deal with arbitrary errors on the n qudits that are 

linear combinations of those errors. The weight wt(E) of an error  
n. is the number of non-identity tensor components it contains. 

 A quantum code C has the ability to detect an error E  n 
if it either reports than an error occured or reports no error and 
returns a projection of the message back onto C. Formally, the Knill-
Laflamme conditions tell us that an error E is detectable by a 
quantum code C if and only if PEP = EP for some scalar E ,where P 
is the orthogonal projector onto C, see [14]. 

 Stabilizer codes are perhaps the most important class of quantum 
codes, and are analogous to the linear and additive codes in classical 
coding theory (hence they are also refered to as additive codes). 
Stabilizer codes are completely determined by their stabilizer group 
S, an abelian subgroup of n, and the code is defined as the subspace 
spanned by all joint eigenvectors of S with eigenvalue 1. Since this 
subspace will always have dimension K = qk , we say the code has 
parameters n,k,d q to denote it as a stabilizer code. 

 
1.2 Hybrid Codes 

In addition to transmitting quantum information, we nowwant to 
simultaneously encode a classical message in with the encoded 
quantum state. A hybrid code has parameters((n,K:M,d))q if and 
only if it can simultaneously encode a superposition of K 
orthogonal quantum states as well as one of M different classical 
states into ( q) a Hilbert space of dimension qn, while 
protecting both the quantum and classical information against all 
errors of weight less than d. 

An ((n,K:M,d))q hybrid code C can be described by a collection 
of M orthogonal quantum codes Cm of dimension K, each 
indexed by a classical message m  [M] = {0, 1, . . . ,M  1}.To 
transmit a quantum state  and a classical messagem, we encode 

into the quantum code Cm. The Knill-Laflamme condiions for 
quantum codes can be generalized to hybrid codes, allowing us 
to characterize detectable errors: an error E is detectable by the 
hybrid code C if and only if 
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  PbEPa       (1) 

 
for some scalar E,a depending on both the error E  
and the classical message a, where Pa is the orthogonal  
projector onto the quantum code Ca. Equivalently,  
if {|ci

(m)>} are the codewords of the inner code Cm,  
we have that E is detectable by C if and only if 
               <cj

(b)|E|ci
(a)>= E,a i,j a,b.               (2)  

 
If both the inner codes and outer code happen to be  
stabilizer codes, we say the code is a hybrid stabilizer code 
with parameters .In this case, the codes have 
some additional structure, so each inner code can be 
viewed as a translation from a seed code C0 by an operator
tm  En \ Z(S0), where Z(S0) is the centralizer in En of the 
stabilizer S0 of the seed code C0, so that Cm = tmC0.
There are multiple simple constructions of hybrid codes 
using quantum codes described by Grassl et al. [5]: 
1. Hybrid codes can be constructed using the following 

 
(1) Given an ((n,KM, d))q quantum code of composite 
dimension KM, there exisits a hybrid code with parameters 
((n,K :M, d))q. 
(2) Given an [[n, k :m, d]]q hybrid code with k > 0, there 
exists ahybrid code with parameters [[n, k  1:m + 1, d]]q. 
(3) Given an [[n1, k1, d]]q quantum code and an [n2,m2, d]q 
classical 
code, there exists a hybrid code with parameters [[n1 + n2, 
k1 :m2, d]]q.In each of these cases the sender is effectively 
substituting classical information for quantum information, 
which depending onthe context may be considered wasteful. 
In [5], Grassl et al. showedit was possible to construct 
genuine hybrid codes that provide an advantage over these 
simple codes, and provided examples of suchcodes found 
using an exhaustive search of small parameters. In [20]the 
authors constructed several infinite families of genuine 
hybridcodes, including a family of binary single error-
detecting codeswhich we generalize to the nonbinary case in 
the next section. 

 
2 FAMILY OF HYBRID CODES OVER Zq 
The first good non-additive quantum code (that is a quantum 
code that is not a stabilizer code) was the ((5, 6, 2))2 code 
given by Rainset al. [23]. This code outperforms the optimal 
[[5, 2, 2]]2 stabilizer code, and was further generalized by 
Rains [22] into a family of odd-length non-additive codes 
that outperform optimal stabilizer codes. However, for an 
odd-length ((n,K, 2)) quantum code we have the following 
bound: 

 

            (3) 

and many families of codes that approach this bound have 
been constructed. In [20], the authors gave a construction for 
a familiy of hybrid stabilizer codes with parameters [[n, n 
3:1, 2]]2 that beat this bound. 
Nonbinary quantum codes with similar parameters were 
hinted at by Rains in [22], and first given by Smolin et al. 
[24] as a generalization of their family of non-additive 
binary codes. Soon after,further families were constructed 
by Hu et al. [9] and Looi et al. [17]using qudit graph states. 
All of these families are codes over integerrings rather than 
finite fields, and our construction of nonbinary hybrid 
stabilizer codes will follow in their footsteps. The reasonwe 

choose to construct codes over Zq rather than Fq is due to the 
following result of Grassl and Rötteler: 

Theorem 1 ([6, Theorem 12]). Let q > 1 be an arbitrary integer,  
not necessarily a prime power. Quantum MDS codes C = 

   [[n, n  2, 2]]q exist for all even length n, and for all length n  2 
when the dimension q of the quantum systems is an odd integer   
or is divisible by 4.  
While the construction below will certainly produce a hybrid 
stabilizer code when q . 2 mod 4, it will not be a genuine hybrid 
code, as the previous theorem implies that there will be an 

[[n, n  2, 2]]q stabilizer code that can be transformed into a  
hybridcode using the first construction in Proposition 1. When q 
= 2,Equation 3 tells us that there can be no [[n, n  2, 2]]2 
quantum code, implying that the family given in [20] is indeed 
genuine. To the best of our knowledge there are no known [[n, n 

 2, 2]]q codes when q = 4r + 2, which is why the codes using 
the construction below may in fact be genuine. However, since 
F4r+2 does not exist except when r = 0, we instead construct our 
codes over Zq. 
Proposition 2. Letn be odd. Then there exists an 
   [[n, n  3:1, 2]]Zq 

 hybrid code. 
 Proof. Let a, b  Znq , m  Zq, and  a primitive q-th root of 
 unity. Define the following states: 

  

 

Define the inner code Cm as follows: 

The state |   is the tensor product of two-qubit states of the 
form 

 

For two of these states 

   we have 

 

 

 =  

     

        =  

     

Therefore for the full states | a,b , | a ,b   we have the same: 

 

  

Similarly, for  we have 

  

Thus all of the codewords are orthogonal to one another.  
Consider two codewords Suppose 
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that a Pauli-X(u) error occurs on the first n 1 qudits. 
Without loss of generality, we can assume that the error 
occurred on either the first or second qudit.If  

 then 
 
       
by the orthogonality relations above. Therefore we can 
restrict our attention to the case where 

 
We note that these restrictions along with the

requirement that the aiand ai sum to 0 and bi and bi sum to m 

a1andb1and in particular we must have a1= a1 1= b1 . If 
the error 
occurred on the first qudit, we have 
    
 
 

 

 

 

 

 =  

  

 
 

A similar argument holds if the error occurs on the second 
qudit,thus the code can detect any single Pauli-X(u) error 

that occurs on the first n  1 qudits. Now suppose that a 
Pauli-Z(v) error occurs on the first n  1 qudits. As above, 
we restrict our attention to the case where 

and the error occurs on one of the first two 
qudits.If the error occurs on the first qudit we have  

 

 

  =

    

 
 

The same argument holds if the error occurs on the second 
qudit,thus the code can detect any single Pauli-Z(v) error 

that occurs on the first n  1 qudits. Now suppose that a 

Pauli error E occurs on the last qudit. If 
then the orthogonality of the first n  1 qudits 

gives us 
    =0 
 

so againwe only need to examine the case where the two 
codewords are the same. 

If we have a Pauli-X(u) error on the last qudit we have 

 

         =  

         =  
meaning that the error is degenerate. Note that since the value  
depends on the classical informationm, each inner code can 
detect the error but the outer code (as a quantum code) cannot.  
If a Pauli-Z(v) error occurs on the last qudit we have 

 

        =  

       

 
We also mention in passing that this construction can be 
generalized further to codes over Frobenius rings by replacing 
the primitive root of unity by an irreducible additive character of 
the additive group of the ring [19]. 

3 CONCLUSION AND DISCUSSION 

Hybrid codes simultaneously transmit both quantum and classical 
information across quantum channels, and can provide an 
advantage over using quantum codes for simultaneous transmission. 
We have generalized a family of single error-detecting codes   

constructed in [20] from the binary case to the nonbinary case. 
While it is known that the construction gives genuine hybrid codes 
when q = 2, the existence of quantum codes with the similar 
parameters when q  0, 1, 3 mod 4 means the construction does not 
produce genuine hybrid codes in all cases. One open question is 
whether or not the codes given by the construction are always 
genuine when q  2 mod 4. As the code family here is the only 
construction of nonbinary hybrid codes, further investigation is 
needed. 
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